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Abstract. Agent-based models have improved the standards for empirical
support and validation criteria in social, biological, cognitive and human
sciences. Yet, the inclusion, in these models, of vertical interactions between
various aggregation levels remains a challenge. We study analytically,
numerically and by simulation the generic consequences of interactions between
the collective and its individual components:

• the appearance of an autocatalytic loop between the dynamics of the
collective and its components;

• the system, which is dominated by a limited number of factors amplified
by this collective↔individuals autocatalytic loop;

• the microscopic features, which are not involved in the autocatalytic loop
and are irrelevant at the systemic level; and

• how the above clarify the interplay between macroscopic predictable fea-
tures and the ones dependent on random unpredictable individual events.

Using the social and market percolation framework, we study the dramatic
effects of the collective↔individuals autocatalytic loop on economic crisis
propagation:

• the percolation transition becomes discontinuous;
• there are a few relevant regions and regimes corresponding to a quite

diverse range of response policy options;
• there are stability ranges where appropriate policies can help to avoid

macroscopic crisis percolation; and
• beyond those regions the systemic crisis might become unstoppable.
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New Journal of Physics 12 (2010) 075038
1367-2630/10/075038+29$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:simona.cantono@unito.it
http://www.njp.org/


2

Contents

1. Introduction 2
2. General conceptual framework 4

2.1. Economic distress contagion in terms of autocatalytic percolation . . . . . . . . 4
2.2. Detailed formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. The dynamic process and main results . . . . . . . . . . . . . . . . . . . . . . 9
2.4. The iterative autocatalytic percolation process . . . . . . . . . . . . . . . . . . 11

3. Theoretical predictions 12
3.1. Graphical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2. Analytical predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Monte Carlo simulations 15
4.1. Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2. Noisy dependence of the bankruptcy clusters size Nb on p and the smooth ‘lower

envelope’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3. Comparing theoretical predictions with simulation results . . . . . . . . . . . . 21

5. Stability of the system and policy implications 25
6. Conclusions 26
Acknowledgments 27
References 27

1. Introduction

In this paper, we study collective processes that have the property that they enhance the
very individual behavior that generated them. This generates an autocatalytic loop between
the collective process and its individual components. Thus, such processes have a decisive
advantage and dominate at the macroscopic scale. We argue that such processes are responsible
for many of the sudden changes that threaten our climate, the ecology of our environment,
our social order and the stability of our economies around the world. In a series of works
(Goldenberg et al 2000, Solomon et al 2000, Weisbuch et al 2001, Aleksiejuk and Holyst 2001,
Bornholdt 2001, Erez et al 2005, Goldenberg et al 2005, Yaari et al 2006, Erez et al 2007,
Sieczka and Holyst 2009, Lorenz et al 2009), the elementary concepts to express, understand
and steer such emergent phenomena have been introduced. Phenomena such as ‘word-of-
mouth’, ‘domino failures’ and ‘viral products’ have been shown to be crucial in explaining,
forecasting and controlling massive global (systemic) changes, such as electric power blackouts,
WWW virus attacks, and economic, financial and credit crises.

In particular, Antonelli (1996), Goldenberg et al (2000), Erez et al (2005), Goldenberg
et al (2005), Yaari et al (2006) and Erez et al (2007) have studied the propagation of
knowledge, products, opinions and information throughout social and economic networks
using the social and market percolation framework. However, in order to describe more
faithfully real economic systems, the original percolation framework has to be enlarged to
account for economic facts that have no analogue in physical systems. In particular, as
opposed to physical systems where the dynamics are usually individual↔individual, in social
and economic systems there are significant collective→individual and individual→collective
effects, such as government interventions, the general state of the economy, the ‘mood of the
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market’ and mass media. Such effects have been shown in the past to lead to self-organized
percolation criticality (Solomon et al 2000), different stages of technological development
along the product lifecycle (Frenken et al 2008), long tails at the early stages of innovation
diffusion (Hohnisch et al 2008) and dependence of demand-pull policies on the learning curve
(Cantono and Silverberg 2009).

Here, we take a further step towards integrating those effects. We show that they
can generate quite generically powerful autocatalytic loops capable of promoting individual
behavior to collective discontinuous changes that affect, suddenly and dramatically, the entire
system. We single out for study the class of systems possessing a ‘collective–individual
autocatalytic loop’. By this we mean that the collective as such acts on its own individual
components in a way that enhances the very individual behavior that generated it. Consequently,
the collective and the individual behavior will enhance one another. Processes with this property
will have a decisive advantage over processes that do not have it. As a consequence, most of the
collective phenomena that are observed at the macroscopic scale have this property. By selecting
at the macroscopic level the features that have the collective–individual autocatalytic property,
this mechanism reduces greatly the number of microscopic features necessary to describe the
system at macroscopic scales and increases its predictability.

In this paper, we try to strike a balance between the generality of the collective–individual
autocatalytic loop and the necessity to give a specific embodiment of the ideas. To this effect,
we have chosen to use terms specific to the economic context and, in particular, to the current
financial crisis.

This systemic worldwide event has challenged in an acute way some of the basic postulates
that mainstream macroeconomics is built upon (The Economist 2009a, 2009b, 2009c). The
cascade of events that disturbed the recent course of the world economy has very little to do
with the scenario prescribed by any of the market theories (Lux and Westerhoff 2009). In fact,
as stated in Colander et al (2008), even after the reality of the crisis was recognized, there
was little that the economics profession had to say about the expected outlook and/or about
the recommended measures: most of the questions fell outside the range addressable in the
traditional economic conceptual framework (Leijonhufvud 2009). In order to understand and
control the evolution of mass phenomena such as the current crisis, one has to give up the
concept of linear causality chains, which associates to each effect a cause. One has to think,
rather, in terms of a collective, emergent causality where a complex network of interactions
between many autonomous agents and their collective as such can lead to collective phenomena
that are completely different from the intentions, scales and scope of the individual components.

In this context, the individual→collective and collective→individual effects are
represented, respectively, by the following:

• the global influence that the distress of one economic agent (firm/bank) has on the general
state of the economic system (e.g. resilience of the system to liquidity shortages, the
system’s exposure to risk, general availability of credit, etc.) beyond the direct influence
that it has on its business associates;

• in turn, the global status of the economy has a direct effect on individual agent sensitivity
to its partner associates’ distress.

The main result of our model is that there exists a discontinuous phase transition between
localized and globalized/percolated distress regimes. This phase transition is governed by four
critical factors.
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More precisely, we will find that, for a given status of the system, in order for the distress
to propagate throughout the entire system, one needs the following:

• an initial density of fragile economic agents (firms, banks, financial companies) that is
larger than a certain critical value; and/or

• a critical strength of the initial exogenous shock (measured by the number of failures
induced exogenously to otherwise healthy economic agents); and/or

• a critical duration of the exogenous pressure (measured by the number of contagions
induced exogenously to otherwise healthy economic agents); and/or

• a critical strength of the individual→collective effect (measured by the exponent of the
dependence of the global economic index on the number of distressed agents).

As long as the density of fragile agents is low, only extremely serious exogenous shocks can lead
to macroscopic (systemic) effects. Once the critical initial density is reached, even small shocks
can lead to the collapse of large parts of the system unless they are stopped by intervention in
the relevant early propagation stage.

In order to address these issues quantitatively, our model formalizes mathematically
one of the most fascinating features of social and economic systems: the interplay between
individual→collective, collective→individual and individual↔individual effects. This allows
us to evaluate the critical number of fragile agents capable of leading to a macroscopic
disaster, how this will propagate and when and how (if at all) it can be stopped. The presence
of an autocatalytic loop between the individual and collective levels profoundly affects the
character of the usual percolation transition, rendering the system dynamics discontinuous, path
dependent and irreversible. However, it also introduces additional features, such as periods of
contagion slow-down, stability ranges where the systemic collapse can be still avoided, and
hang-up points where small and almost costless intervention can save the entire system.

The present autocatalytic percolation framework extends beyond the crisis study to an
entire range of other social and economic systems. It allows one to predict, control and offer
decision making tools for harnessing a variety of desirable and undesirable contagion processes.

The structure of the paper is as follows. In section 2.1, we give the economic background
and motivation. In section 2.2, we give a detailed formulation of the connection between
the crisis phenomenology and the agent-based social and market percolation framework.
In section 2.3, we describe the crisis propagation scenario and preview the main results.
In section 2.4, we write explicitly the iterative equations characterizing the autocatalytic
percolation process. In sections 3.1 and 3.2, we study, by theoretical and analytical means, the
process introduced in section 2. In section 4.1, we describe in detail the numerical simulations
of the agent-based model. In section 4.2, we address the effects of randomness on individual
realizations of the process and introduce the concept of lower envelope. In section 4.3, we
confront in detail the theoretical and simulation results. In section 5, we discuss the stability
ranges of the system and its policy implications. In section 6, we offer conclusions on the actual
economic systems and the outlook.

2. General conceptual framework

2.1. Economic distress contagion in terms of autocatalytic percolation

The mechanism demonstrated in the present paper describes and explains the emergence of
complex, collective macroscopic phenomena in a wide range of domains: ecology, social
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science, cognition, etc. In the simplest formulation it exploits the influence of the collective as
such on its individual components. While systems of this type have been described in the past,
the present framework allows a precise formulation of the collective–individual autocatalytic
loop mechanism and a rigorous analytical, numerical and simulation treatment that leads to
predictions that are verifiable by empirical experiments and observations. We thus propose a
sketch of a possible future line of applied research that has to be implemented in detail in
order to confront quantitatively the economic reality in general and the current financial crisis
in particular. Such an effort to translate its beautiful theoretical generality would surely be most
appreciated by practitioners, policy makers and applied scientists.

We claim that several main causes contributed to the current economic crisis:
underestimation of systemic risk, systemic insolvency and liquidity shortage were the reasons
for the sudden systemic collapse. Scholars who are perceived to be mainstream economists
gave different explanations about financial crisis in general (Lucas 1972, Friedman 1981,
Bernanke 1983), and the causes of the current one in particular (Krugman 2009, Blanchard
2009, O’Grady 2009—interview to Gary Becker). Moreover, there is no consensus on what
seems to us to be the most realistic alternative: that is the Hyman Minsky theory of financial
fragility (Davidson 2008).

We claim that one of the problems with these macro-economic explanations is that they
predict immediate and automatic diffusion of financial distress throughout the entire eco-
nomic system. In reality, not every financial ‘event’ spreads over the entire system (Kaminsky
et al 2003). A cascade of failures depends not only on the power of the amplification mechanism
but also on the strength of the shock affecting the initially distressed agents (Dow 2000). The ex-
planation of the delayed, non-automatic and sometimes disproportionate effects relies on taking
into account the barriers to the overall diffusion of distress due to the macro- and micro-structure
of the system as well as the autocatalytic loops between the scales. A small distress may trigger
the system to a crisis, but the system’s resilience depends on both individual→collective and
collective→individual effects, as well as individual↔individual interactions.

In the case of the current crisis, the seeds for the critical collective unstable state were
already sown at the beginning of 2000 during the dot-com crisis and the consequent crash of
the individual stock market indexes (DeLong and Magin 2006). This was clearly an example of
a collective→individual induced effect since the individual firm failures often had little to do
with their actual worth. The actions taken by the Federal Reserve (Fed), along with high savings
rates mainly from Asia but also from the rest of the world (O’Grady 2009—interview to Gary
Becker), triggered a drop in interest rates. This was part of a series of measures that affected
the system at the collective macroscopic level. From 2001 to 2003, the Fed slashed the federal
fund target in an attempt to ‘jumpstart the economy out of recession’ (Murphy 2008). The credit
market inflated to a monstrous size, unfettered by the extremely lax requirements for accessing
credit. This reflected upon the individual firm level that accumulated vastly more debt compared
to the assets to guarantee it. As the housing bubble exploded, the propagation of distress became
‘autocatalytic’: not only did the individuals and banks experiencing losses transmit their distress
to their financial/business partners, but also the deterioration of their own collaterals decreased
the worth of the assets leveraging the financial liabilities of everybody else as a collective. This
bottom-up transformation of individual distress into collective systemic negative mood in turn
negatively affected each of the individual economic players.

Moreover, via such autocatalytic (‘procyclical’) collective↔individual loops, the
misalignment between the cost of financial intermediations and the associated risk (through
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non-regulated chains of collateralized debt obligations) led ultimately to a loss of control on
the intermediations themselves. This collective state impacted well beyond the expected degree
upon the individual probability of insolvency and on the system fragility on all scales: even
though individual financial institutions considered themselves hedged against any particular
risk, they were in fact markedly exposed to systemic/collective risk. Individual exposure does
not always reveal the collective exposure of the whole system in as far as it ignores feedback
loops connecting the individual players to their collective.

Indeed, a ‘vertical’ (collective→individual) effect by which the totality of individual
players affects each individual player indirectly by the general depreciation of all the
assets could not even be expressed by the usual macro-economic models in the same way
in which the macroeconomic models could not express the ‘horizontal’ (‘peer-to-peer’)
individual→individual contagion of distress between business partners. The crisis autocatalytic
loop was closed by recurrent actions through which individuals were affecting the collective
state of the system. For instance, during the beginning of the race for liquidity, one observed
a rush of withdrawals, precautionary increases in the reserve/deposit ratios and an increased
desire by banks for very liquid or rediscountable assets. Helped by this collective–individual
autocatalytic loop, the individual→individual ‘horizontal’ contagion through business/financial
interactions spread the distress that was originated by the sub-prime mortgage crisis to other
parts of the economy and even to other countries, destabilizing them in turn. In particular,
European banks and European public authorities who were holders of packaged mortgage-
backed assets underwritten by American financial institutions saw the rise by contagion of their
credit risk and the decrease of their share prices. Again, this peer-to-peer distress propagation
was promoted to systemic scales by bottom-up mechanisms and further propelled by ensuing
top-to-down effects: systemic risk and systemic insolvency. This extended the crisis far away
from the initial centers of infection and from the obvious weak individuals to the rest of the,
until then, ‘safe’ elements of the system.

2.2. Detailed formulation of the problem

Let us express in a more formal way the above ideas:

• The current status of the economy is measured by a global economic variable p.

• The status of the economy at the start of the crisis is labeled by the value p = p0 of this
global index when the first bankruptcy5 takes place.

• The set of firms6 in the economic system under study is indexed by a label i =

1, 2, 3, . . . , M . We consider M ‘large enough’ and do not insist, in the present paper,
on the effects of finite system size M.

• Each firm’s fragility is characterized by a fragility threshold pi . If the global economic
index p decreases below this threshold p < pi , i is said to become a potential failure7 with
the implications detailed below.

5 We will call the economic agent in distress ‘bankrupt’. The term ‘bankrupt’ as it is used throughout this paper is
an abstract generic label for a range of real-life situations in which an economic agent (firm/bank) displays objective
signs of distress (such as shrinking of production or of manpower, liquidity constraints, delays in payments,
negative warnings to the stock market and cancelations of dividend payments).
6 We will generically call our agents ‘firms’.
7 We define the concept of ‘potential failure’ or ‘potentially bankrupt’ to characterize the firms that are susceptible
to becoming bankrupt by being infected/contaminated by an eventual bankrupt neighbor.
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• Each firm i is connected to business partners or ‘neighbors’ j. The links (i, j) form a network
with a certain geometry. This network geometry characterizes the individual↔individual
interactions and is one of the main characteristics of the system.

• A firm i will go bankrupt if, and only if, two conditions are both fulfilled:
A. one of its partners/neighbors goes bankrupt and
B. the firm i is a potential failure, pi > p.

Conditions A and B imply the possibility that, following an initial number N0 of exogenously
induced bankruptcies, the process may continue self-sustained by the iterative contagion and
bankruptcy of further firms. If the number of bankruptcies reaches values of the order of M, we
say that the bankruptcy wave (crisis) has percolated.

In order to perform a concrete quantitative analysis of this general phenomenon, we make
the following specific assumptions.

We assume that each firm i is linked to four ‘neighbors’ j in a two-dimensional (2D) square
lattice geometry. We consider this geometry for definiteness and in order to exploit the extensive
knowledge accumulated in the percolation literature for this particular case. In real applications,
the individual↔individual network structure will have to be input empirically. As it will turn
out, the lattice choice affects the dynamics mainly through its critical percolation density and
the critical (susceptibility) exponent.

We assume that the pi s are random, independent variables distributed by a Pareto power
law probability distribution:

P(pi > θ) = θ−µ for θ > 1 and P(pi > θ) = 1 for θ < 1.

We choose a power law distribution for the firm’s fragility indices pi because most of the
measures of company performance, both positive (Axtell 2001) and negative (Fujiwara 2004,
Delli Gatti et al 2004), have been found to display such power law distributions.

According to this assumption, the density of firms that are potential failures at an economic
state characterized by the global index p is

ρ(p) = p−µ for p > 1 and ρ(p) = 1 for p < 1. (1)

Note that, with this convention, there are no firms more stable than pi = 1, which is reasonable
if we take, by convention, p = 1 as the state of total stagnation of the entire economy. The
exact form of equation (1) is, however, not crucial for the qualitative behavior of our system (an
exponential would give similar results).

Equation (1) expresses the collective→individual influence of the global status p on
the ‘potentially bankrupt’ status of the individual firms, and thus also defines implicitly the
percolation critical value of the global economic index p:

pc = ρ−1/µ
c ,

where ρc is the critical percolation density. More precisely for ρ > ρc, the potential failures
form a macroscopic ‘giant cluster’ (in addition to many smaller ones). Thus, for p < pc there
exists a macroscopic giant cluster of potential bankruptcies. If the macroscopic ‘giant cluster’
corresponding to a certain value p < pc happens to contain one or more of the initial N0

bankruptcy seeds, then one is guaranteed that all the sites in this macroscopic cluster will go
bankrupt.
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We assume that the bankruptcy of Nb individual firms impacts on the general status of the
economy:

p (Nb) = p0 N−α
b , (2)

where α is the individual→collective interaction exponent. We take the values of α between 0.1
and 1. Below this range the influence is quite negligible and above it the influence is too brutal
and unrealistic. Since Nb = 0 does not make sense in formula (2), we normalize the state of the
system by p0 corresponding to the initial status of the economy at the beginning of the crisis,
when the first firm goes bankrupt, i.e. for Nb = 1.

Equation (2) has been used in the past to analyze the dependence of demand-pull policies
on the learning curve (Cantono and Silverberg 2009). In our current theoretical formulation,
the individual↔collective interaction exponent α expresses the capacity of the system to react
and absorb the implications of the bankruptcy of its individual elements. Equation (2) implies
that the first bankruptcies have a more important effect (because of the novelty and surprise),
while the effect per failed firm decreases as the number of failures increases (due to habitu-
ation/desensitization). To our knowledge, a similar mechanism has been studied in the social
psychology domain (see Nowak et al 1990). As mentioned in section 2.1, a detailed implemen-
tation will be needed in the future in order to confront it quantitatively with economic reality.

Indeed, the exact functional form in which Nb influences p is still an open social and
economic problem. However, for the generic phenomena of the present paper to take place
(e.g. for the continuous percolation transition to turn into a discontinuous one), it is sufficient
that p in (2) is a decreasing function of Nb.

In fact the inclusion of an ‘individual→collective’ effect of the type expressed by
equation (2) is the crucial ingredient in the present model. In the absence of equation (2),
the dynamics of the process would be rather trivial: the propagation of the bankruptcy crisis
to macroscopic level would only depend on whether the initial economic index p0 is smaller
(p0 < pc) or larger (p0 > pc) than the usual (static) critical percolation value pc. Moreover,
the usual percolation phase transition at p0 = pc would be continuous. In the presence of
equation (2), the new critical value p0c separating the stable phase from the systemic crisis
phase is significantly larger than pc, and the phase transition at p0c is discontinuous.

Why the individual→collective mechanism should take the form of a power law decay is
still an open question that surely needs and deserves further scientific inquiry.

Obviously, rules A and B together with equation (2) provide a mechanism for the crisis
propagation but do not provide a mechanism for initiating/triggering a crisis. We still have to
give a formal description of the exogenous mechanisms that generate the initial bankruptcies
that trigger the crisis, i.e. the first wave of bankruptcies has to take place by a different
mechanism than rules A and B. Following the empirical evidence, we assume that the initial
bankruptcies may take place in two phases:

Phase I. N0 sites/firms that go bankrupt at this stage. These sites are chosen randomly and
completely independent of their positions or their pi s.

Phase II. If phase I is not enough to produce a ‘percolation’ of the crisis, one may
consider an additional ‘forced contagion’ phase that increases exogenously the number
of bankruptcies to Nf. These additional bankruptcies are no longer completely random and
take place according to the A + modified B rules:

• A-(unchanged): only firms that have a bankrupt neighbor can go bankrupt;
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• B-modified/relaxed: as long as Nb < Nf, the most fragile site i having a bankrupt
neighbor goes bankrupt even if its pi < p. This particular way of exogenously
forcing the bankruptcy contagion is not the only possible one. Other alternatives for
increasing the bankruptcy clusters to Nb = Nf would work the same way. We made this
particular choice because of its similarity to the already known invasion percolation
procedure (Wilkinson and Willemsen 1983).

For a given network geometry characterized by a critical percolation density ρc and a critical
exponent γ (see section 2.4, equation (3)), a given individual→collective interaction exponent
α, a given collective→individual exponent µ and a given initial status of the economy p0, we
are now in the position to ask: what is the severity of the exogenous shock (in terms of N0 and
Nf) sufficient to ensure that the contagion process continues to propagate/percolate (according
to rules A and B) to a macroscopic crisis?

2.3. The dynamic process and main results

Let us make the question above more precise by making explicit the scenario that we wish to
eventually formulate and analyze quantitatively in the rest of the paper.

(a) Following the exogenously driven phases I and II, the bankruptcy clusters total Nf firms
(if phase II is absent, the only implication for the following analysis is that Nf = N0).
According to equation (2), the economic index is then

p(Nf) = p0 N−α
f .

According to equation (1), this means a density of potential failures (density of sites with
pi > p) equal to

ρ(Nf) = p(Nf)
−µ

= p−µ

0 N α µ

f .

(b) Thus there is a significant probability that, even after the exogenous factors cease to act,
some of the firms that are neighbors of the bankrupt clusters may be potential failures and
go bankrupt as soon as rules A and B start being enforced.

(c) Consequently, the bankrupt clusters grow and more potential failures become neighbors
of the bankrupt clusters and go bankrupt themselves, according to A and B, and so on,
iteratively.

(d) This will increase the number of bankruptcies to a higher level N1 > Nf, which will bring
the economic index p to an even lower level p(N1) = p0 N−α

1 < p(Nf).

(e) That, in turn, may bring further sites (firms) to fulfill pi > p(N1) and become potential
failures.

(f) Similar to step (b), the ones among those potential failures that are neighbors of one of the
bankrupt clusters will actually go bankrupt, according to the A and B rules.

(g) Similar to (c), due to the new bankruptcies, the clusters grow and more potential failures
become neighbors of the bankrupt clusters and go bankrupt themselves, according to the A
and B rules, and so on.
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(h) Similar to (d), this would further increase the number of bankruptcies to N2, which,
according to equation (1), would in turn lower the index to p(N2) = p0 N−α

2 < p(N1), and
so on.

For some values of the parameters p0, α, N0, Nf, µ, the iterative bankruptcies contagion process
described above might eventually stop at a finite value of N. For other values of the parameters,
the crisis might propagate throughout the entire system. In the detailed theoretical, numerical
and Monte Carlo simulation analysis below, we will find sharp discontinuous phase transitions
between these two extreme regimes in all the parameters.

However, due to the symmetries of the problem,

Nb(N0, p0, α, µ) = Nb

(
N0, p′

0 = pµ/µ′

0 , α′
=

αµ

µ′
, µ′

)
,

Nb(N0, p0, α, µ) =
N0

N ′

0

Nb

(
N ′

0, p′

0 =

(
N ′

0

N0

)α

p0, α, µ

)
,

only two of the four parameters p0, α, µ, N0 are independent: the discontinuous effects of
varying µ and N0 can be related to the effects of varying p0 and α. Thus, throughout the paper
we will keep fixed µ(µ = 5/2) and N0(N0 = 40), and vary mainly p0 and α. For instance,
figure 5 plots the discontinuous phase transition line p0c(α,µ,N0) in the (p0,α) plane.

We will show the following:

(i) For values of p0 < p0c(α,µ,N0), the process initiated by phase I alone (N0 independent
bankruptcies) propagates autonomously to a macroscopic number of firms. For p0 just
below p0c(α,µ,N0), the crisis propagation starts at a fast pace but slows down around the
hang-up point. After this point is overcome, if there is no further intervention, the crisis
finally takes off to diverge increasingly fast to macroscopic scales.

(ii) For larger values p0 > p0c(α,µ,N0), phase I is not sufficient to trigger a macroscopic crisis.

• One may still achieve macroscopic crisis propagation if phase II brings by
forced contagion the total number of bankruptcies Nf above a critical value Nf >

NS(N0,p0,α,µ). In this case, the crisis propagates autonomously to macroscopic Nbs
according to rules A and B, even after the exogenous pressure stops.

• On the contrary, for Nf < NS(N0,p0,α,µ), the process stops at finite Nb soon after the
exogenous crisis factors cease to act.
The discontinuity point NS is plotted in figure 6 as a function of p0 (for fixed α, N0

and µ).

(iii) As opposed to the usual percolation transition pc, the transition between regimes (i) and (ii)
is discontinuous: at p0 = p0c(α,µ,N0) the number of bankruptcies necessary to induce a
macroscopic crisis jumps from Nf = N0 to about Nf ∼ 4N0 (e.g. equation (15)). Moreover,
p0c is, of course, much higher (e.g. equation (14)) than the value pc in the absence
of individual→collective interaction. Also, the final state of the process is completely
different from the usual percolation outcome.

We will evaluate theoretically p0c(α,µ,N0) and NS(N0,p0,α,µ) using the scaling properties of
the percolation clusters around the percolation critical density ρc. The theoretical analysis and
the Monte Carlo simulations agree.
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2.4. The iterative autocatalytic percolation process

In order to understand theoretically and evaluate numerically the critical values p0c(α,µ,N0)

and NS(N0,p0, α, µ), we will use our knowledge of the percolation critical behavior. More
precisely, we will use the fact that we know that the mean size of the clusters conquered by the
crisis diverges when the density of potential failures approaches the critical density ρc:

N (ρ) = N0

(
1 −

ρ

ρc

)−γ

. (3)

The coefficient N0 is fixed by the requirement that, for ρ = 0, the clusters remain at the initial
size N (ρ = 0) = N0.

Equation (3) can be rewritten according to equation (1) also as

N = N0

[
1 −

(
pc

p

)µ]−γ

. (3′)

Equations (3) and (3′) express the effects of the individual↔individual interactions in the model
and emphasize the stochastic distributed character of the causality in the present model: the size
of the bankruptcy clusters N depends on the individual fragilities (through their density ρ) and
on their network of interactions (through ρc and γ ).

Equation (3) is, of course, only an approximation for at least three reasons:

• As the clusters grow, they will start to merge and their number will decrease.

• For small clusters, far away from the scaling regime, the scaling is not guaranteed.

• We will see that there is significant non-Gaussian noise in the clusters, size distribution of
the individual configurations realizing (3) and (3′).

This is why we will check this assumption directly by confronting the theory with the Monte
Carlo simulations. In fact, we will explicitly confront below (figures 3 and 4) the scaling
formula (3′) with Monte Carlo data and in this way fix the effective value of the critical exponent
γ for the relevant range of parameters.

The fact that the only network information necessary to give a diagnostic and an
intervention policy/strategy are the global parameters ρc and γ indicates that, while the present
analysis refers for definiteness to a 2D square lattice, the method applies straightforwardly to
any network for which ρc and γ can be obtained. The results are thus expected to hold for a
wider range of network geometries.

Together with equation (1) (collective→individual) and equation (2) (individual→
collective), equation (3) (individual↔individual) closes the autocatalytic loop:

p(N0)
eq. (1)
−→ ρ(p(N0)

eq. (3)
−→ N1 = N (ρ (p(N0)))

eq. (2)
−→ p (N1)

eq. (1)
−→ ρ(p(N1)) → · · ·

The closure of this chain clearly shows that the dynamics of the system evolve in autocatalytic
cycles. Thus we can characterize the dynamics in terms of a series of cycles indexed by an
integer k. Each cycle k consists of three steps:

• the decrease in global index pk as a result of the previous cycle bankruptcies Nk−1

(according to equation (2));

• the increase in the density of the number of potential bankruptcies ρk as a result of the new
index pk (according to equation (1));
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• the increase in the number of actual bankruptcies Nk as a result of the increase in the
density ρk of potentially bankrupt agents (according to equation (3)).

Thus, according to equations (1)–(3), the theoretical analysis reduces to the study of the iterative
process that represents the cyclic iteration of the three steps:

pk = p(Nk−1) = p0 N−α
k−1, (4)

ρk = ρ(pk) = p−µ

k , (5)

Nk = N (ρ(p(Nk−1))) = N0

(
1 −

ρk

ρc

)−γ

. (6)

Or, substituting ρk in Nk ,

pk = p0 N−α
k−1, (7)

Nk = N0

[
1 −

(
pc

pk

)µ]−γ

, (8)

with the initial value N (0) = N0, i.e. p1 = p0 N−α
0 .

Or, further substituting pk in Nk ,

Nk = N0

[
1 −

(
pc

p0

)µ

N α µ

k−1

]−γ

. (9)

We will alternatively use forms (7), (8) or (9) to study the properties of the autocatalytic
percolation process according to convenience.

3. Theoretical predictions

3.1. Graphical analysis

In order to visualize the iterative autocatalytic percolation process of equations (7) and (8), we
represent in figures 1 and 2 the state of the system at iteration k as a point of coordinates (Nk ,pk)
in the plane with coordinate axes N (horizontal) and p (vertical).

If curves (2) and (3′) intersect (figure 2) or are at a tangent, the values of N and p where
this happens are fixed (stagnation) points of the process (7)–(8).

Consequently, the question of the divergence to macroscopic scales of the bankruptcy
crisis process (7)–(8) reduces to the question of whether the system (2)–(3′) or, equivalently
(substituting (2) into (3′)), whether the equation

N = N0

{
1 −

[
pc

p0

]µ

N αµ

}−γ

(10)

has or does not have real solutions.
We call equation (10) the fixed point Stauffer equation in honor of one of the outstanding

pioneers of percolation and of its application to social, biological and economic systems.
For the particular case γ = 1/αµ, the Stauffer equation (10) is analytically solvable and

the two solutions Nstop(N0,p0,α,µ) and NS(N0,p0,α,µ) are written explicitly in the next section
(equations (12)–(13)) as well as condition (14) for these solutions to be real.

Before we compare the numerical theoretical predictions of the present section with the
Monte Carlo simulations, we present the analytic solutions of the Stauffer equation for the
analytically solvable case γ = 1/αµ.
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N2= N0 {1-[pc/p2] 
µ}-γ

p0
N0 

p 

pc 

N0 

N1= N0 {1-[pc/p1] 
µ }-γ

N3= N0 {1-[pc/p3] 
µ}-γ

N= N0 {1-[pc/p] µ }-γ

N 

p2=p0N1
-α

p3=p0N2
-α

p=p0 N-α

p1=p0N0
-α 

Figure 1. Evolution of the system under the influence of the iterative cycle
equations (7) and (8) (a,b). The state of the system at iteration k is represented by
the point of coordinates (Nk , pk) in the plane with coordinate axes N (horizontal)
and p (vertical). The (blue) vertical projections from the red line (equations (3)
and (8)) to the blue line (equations (2) and (7)) represent the decrease in p due
to the increase in N according to equation (7) (step a). The (red) horizontal
projections from the blue line (equations (2) and (7)) to the red line (equations (3)
and (8)) represent the increase in N due to the decrease in p according to
equation (8) (step b). If, as in figure 1, the red curve N = N0[1 − (pc/p)µ]−γ ,
(equation (3)) is always above and to the right of the blue curve p = p0 N α

(equation (2)), the process leads to N increasing without any obstruction
to macroscopic values (and p decreasing correspondingly). In other words,
figure 1 illustrates the case when the process (7)–(8) (equivalently, the process
equation (9)) has no fixed point and equation (10) (equivalently, system (2)–(3′))
has no real solution. See figure 8 for actual realizations of this scenario.

3.2. Analytical predictions

We obtained in the previous section the recursive formula (9) for the iterative growth of clusters
of bankruptcies Nk and the Stauffer equation (10) for its fixed points.

For γ = 1/αµ, the Stauffer equation (10)(
N

N0

)−1/γ

= 1 −

(
pc

p0

)µ

N αµ,

N−1/γ N
1/γ

0 = 1 −

(
pc

p0

)µ

N αµ

reduces to an algebraic second-degree equation in N 1/γ ,

N 1/γ

0 = N 1/γ
−

(
pc

p0

)µ

N 2/γ (11)

and thus it can be solved analytically.
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Forced 

contagion 

Nstop NS

Resistance 
Range 

N1= N0{1-[pc/p1]
µ}-γ

p0> p0c

N 

N0 

pc 
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pStauffer

N0 

N2= N0{1-[pc/p2]
µ}-γ

N3= N0{1-[pc/p3]
µ}-γ

N= N0{1-[pc/p]µ}-γ

p=p0 N-α

p2=p0N1
-α 

p3=p0*N2
-α 

p1=p0N0
-α 

Figure 2. Evolution of the system with the same conventions as in figure 1.
This time one illustrates the case p0 > p0c. The difference is that, for the case of
figure 2, the process (7)–(8) (equivalently equation (9)) has two fixed points, i.e.
the Stauffer equation (10) (equivalently, the system (2)–(3′)) has two solutions
Nstop and NS. One sees that, in this case, the bankruptcy propagation process
that has only N0 bankruptcies at phase I stops after a short while at Nstop.
Even if one has a phase II with Nf < Nstop bankruptcies exogenously induced
by forced contagion, the result does not change: the process stops at Nb = Nstop.
If Nf is in the interval (Nstop, NS), then the resulting global index p = p0 N α

f
(equation (2)) leads to a density ρ = pµ

0 N αµ

f of potential bankruptcies, which
in turn corresponds by equation (3′) to bankruptcy clusters of size N = N0[1 −

(pc/p)µ]−γ lower than Nf, and thus the process stops immediately after the
exogenous pressure ceases at Nf. The crisis will reach macroscopic scales only
if there is a phase II that brings by forced contagion the number of bankruptcies
to a value Nf > NS. In this case, the process advances towards a macroscopic
number of bankruptcies, even after the exogenous pressure ceases. See figure 9
for the actual realization of the scenario described by figure 2.

Having this analytic solvable case makes it easier to interpret the above generic analysis,
as illustrated in figures 1 and 2.

• The lower solution of the fixed point equation (11) is:

Nstop(N0, p0, α, µ) =

1

2

(
p0

pc

)µ

−

√(
p0

pc

)2µ

− 4

(
p0

pc

)µ

N 1/γ

0


γ

. (12)

If Nstop is real, the process starting at N0 will stop spontaneously at Nstop if there is no initial
exogenous forced percolation phase II.
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• The upper fixed point NS is

NS(N0, p0, α, µ) =

1

2

(
p0

pc

)µ

+

√(
p0

pc

)2µ

− 4

(
p0

pc

)µ

N 1/γ

0


γ

. (13)

For the crisis to become macroscopic, one needs a forced contagion phase II until the
number of bankruptcies Nf > NS(N0,p0,α,µ).

• The critical p0 value,

p0c(N0, α, µ) = pc4
1/µN 1/γ µ

0 = pc4
1/µN α

0 , (14)

has the following interpretation. If the initial state of the system is p0 < p0c(N0,α,µ), then
the expression in the square root of equation (12) (and (13)) is negative and there are no real
fixed points. In this case, the process initiated by just phase I would propagate throughout
the entire system self-sustained, even in the absence of the ‘forced percolation’ phase II.

Once p0 reaches the critical value p0 = p0c(N0,α,µ), there is suddenly a real solution
of (10) at

Nhang-up (N0, p0, α, µ) = 2−1/αµ

(
p0

pc

)1/α

= 2γ N0. (15)

So, at p0 = p0c(N0,α,µ), there is a serious jump in the number of bankruptcies necessary to
destabilize the system from N0 to Nf ∼ 4N0 (since γ ∼ 2, cf Hoschen et al 1979, Margolina
et al 1984).

However, if p0 remains just below p0c(N0,α,µ), the initial N0 bankruptcies of phase I
are enough to trigger a macroscopic crisis. One would still have a very long period of crisis
‘incubation’ around Nb ∼ Nhang-up.

4. Monte Carlo simulations

4.1. Numerical experiments

The Monte Carlo simulation that realizes our autocatalytic percolation model is described by
the following features.

Due to the two invariance properties, only two of the four parameters N0, p0, α and µ need
to be varied. We generated random configurations by a Monte Carlo procedure. More exactly,
we extracted independently for each site i of a 200 × 200 square lattice a random number pi

according to the probability distribution (1) with µ = 5/2. For each configuration, we made
runs starting with a few different random sets of initial N0 = 40 bankrupt sites.

There are, in principle, a few possible simulation procedures realizing the model. In
particular, one of the decisions to be made is at which stage, after updating the number of
bankruptcies according to A and B, one updates the global index p according to equation (2).

There is no problem in updating p after each bankruptcy. However, this would be quite
unrealistic since the global dynamics have shorter time scales than the individual firm.

Another possibility would be to apply A and B to all firms currently neighboring the
bankruptcy clusters and then, according to the number of them that went bankrupt, to update p.
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Yet another possibility is to keep p unchanged after the first wave of bankruptcies
(composed of the first neighbors of the bankrupt clusters) and use the same p while one applies
A and B to all new neighbors created (iteratively) by the new bankruptcies. Only when there are
no such neighbors left would one take note of the current value of Nb and update the p index
accordingly to p = p0 N−α

b .
While we ran all of these alternatives, we prefer the last one (we call it the mesoscopic

algorithm) from the point of view of relevance to the real world and for modeling convenience.
The iterations generated in this way have a direct interpretation in terms of the cluster dynamics
of the process: after each iteration k, the value of Nk corresponds to the size of the bankruptcy
clusters at the value pk that the global index has during that step.

This set of points (Nk , pk) is the Monte Carlo correspondent of the points (Nk , pk) obtained
from the iteration of the theoretical formulae (7) and (8).

However, there are some differences between the Monte Carlo runs and the theoretical
analysis based on (7) and (8).

For instance, in the recursive process (7) and (8), it is possible to trace the points residing
between Nstop and NS by just running the recursion backwards. In the Monte Carlo procedure, if
one forces the system into a state Nb = Nf ∈ [Nstop(N0, p0, α, µ), NS(N0, p0, α, µ)] where the
bankruptcy clusters size Nb exceeds in size the clusters corresponding (through equations (3′)
and (8)) to the current index p, the process simply stops.

Thus, based on the theoretical analysis, the Monte Carlo runs are expected to display the
following features.

One expects that there exists for each N0, α and µ a critical value p0c(N0,α,µ), such that
for p0 < p0c(N0,α,µ) the process diverges (even in the absence of phase II) to values of Nb of
size M of the system (figure 7).

We find p0c by running, for various values of p0, runs that have only phase I. We record as
p0c the largest value p0 for which the process does not stop (figures 8 and 10).

For p0 ∼ p0c(N0,α,µ), the crisis has a long period of indecision around Nhang-up. In this
region, the number of new bankruptcies at each step is very small and the slightest noise or
accident in the pi s or their positions can stop the process (figures 8 and 10).

If the process does not stop in the Nhang-up region, it eventually diverges to macroscopic
sizes in an exceedingly accelerated path.

For larger p0 > p0c(N0,α,µ) values (figure 9), one expects the following:

• there exists a value Nb = Nstop(N0, p0, α, µ) at which the bankruptcy contagion process
stops for any Nf < Nstop(N0, p0, α, µ) (including Nf = N0, i.e. in the total absence of
phase II);

• there exists a value Nb = NS(N0, p0, α, µ) such that, for Nf > NS(N0, p0, α, µ), Nb

continues to grow and reaches macroscopic values;

• if phase II ends between those values, Nstop(N0, p0, α, µ) < Nf < NS(N0, p0, α, µ), then
the process ceases immediately after Nb = Nf. Thus in order to find NS(N0, p0, α, µ), one
performs runs with different Nf and singles out as NS(N0, p0, α, µ) the lowest Nf for which
the process still diverges.

These predictions are fulfilled very well by the Monte Carlo runs, but the amount of noise
for each particular realization is quite large. To understand and correct it, we initiated a few
further simulations and numerical experiments. These experiments clarify and strengthen our
theoretical control on the system, as seen below. However, it will remain true that, for individual
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realizations, policy makers should expect significant noise with the characteristics that we
discuss in our analysis (see figure 10). Life realizes itself only once, and not exactly as ideally
planned.

4.2. Noisy dependence of the bankruptcy clusters size Nb on p and the smooth ‘lower envelope’

Let us discuss here the special source and character of noise in the percolation processes. It is
known that the bankruptcy percolation clusters Nb do not grow smoothly with increase in the
potential failures density ρ. This is trivially true in the neighborhood of the singularity around
ρc, where (cf (3)) very small changes in the density ρ or in the economic index p may lead
(cf (3′)) to macroscopic changes in the bankruptcy clusters Nb. However, even in the ρ ranges
where the average cluster size given by equation (3) and (3′) changes smoothly with ρ or p, there
is great discontinuity in the dependence of the particular cluster sizes on ρ or p.

To understand this, let us note that one cannot picture the percolation process as a gradual
increase in the radius of a set of more or less regular clusters of bankrupt sites. Rather, the
true mechanism is clusters fusion: the bankrupt clusters are surrounded by quite a number of
clusters of potential failures. These clusters may have sizes comparable to the bankrupt one.
Once a bankruptcy cluster touches even one site of a potential failure cluster, the entire potential
failure cluster becomes bankrupt and joins the bankruptcy cluster. Thus, occasionally, upon a
very small decrease of p (increase in ρ), Nb may increase by a quantity that in principle may be
of the same order of magnitude as its own current size (or, to be more precise, 1/N0 of it).

Thus, the noise in the actual distribution of pi values in the network is amplified to the
noise in the cluster structures, and then amplified further in the way clusters join into larger
clusters. In particular, of greatest dynamical impact are firms/sites with the lowest pi . For
instance, the clusters’ neighboring sites with pi ∈ (pk+1, pk) are responsible for the cessation
of the percolation process at the end of iteration k and for the extent of its continuation during
the k + 1 iteration. In fact, equation (3′) captures in average exactly this increase of cluster size
as a function of current p.

In order to identify and characterize these points, we adopted the following ‘lower
envelope’ procedure.

We ran Monte Carlo runs in the A+B-modified regime (i.e. the invasion percolation
algorithm). In this way we obtained a rather noisy series of pi s (black points in figure 3).
Out of the many values appearing in that series, we selected the ‘lower envelope’: that is the
points that constituted real obstructions in the continuation of the process. More precisely, we
singled out points whose pi values were lower than any of the previous pi s that appeared in the
series. The size Nb of the bankrupt clusters corresponding to each of these values was recorded.
Subsequently, each ‘lower envelope’ point l was characterized by its coordinates (Nl , pl) and
plotted in the (N, p) plane.

This series of points is the Monte Carlo analogue of formula (3′) in as far as it connects the
size of the clusters to the value of the index p, which leads by percolation to such clusters.

In fact, in figure 3 one sees a very good agreement between the two (the discrete yellow
circles and the red continuous line, respectively).

Their relation is much like the relation between the series produced by the theory-based
iterations (7), (8), and the runs based on the mesoscopic algorithm (A and B rules).

The difference is that, in the latter case, both the theoretical (red diamonds in figures 7–9)
and the simulation series (green circles in figures 7–9) are sparse (only some values of N = Nk
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Figure 3. Black points represent, in order of their appearance (indexed by
N = Nb), the values of pi during a process generated by iterating steps
(A) + (B) modified in a single Monte Carlo configuration. The initial number
of exogenously enforced bankruptcies was N0 = 40. One notices the noisy
character of this pi series. The yellow circles represent points of the ‘lower
envelope’: the subset of pi s that are smaller than all the pi s preceding them in
the series. In contrast to the initial pi series, the lower envelope is quite regular
(but sparse). One sees that the lower envelope fits well the scaling function
equation (3′) (and consequently also (8)), represented by the red continuous
curve.

1

2

3

0 20 40 60 80 100 120
N/N_0
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Figure 4. Comparison of the lower envelopes for different values of N0 (but the
same Monte Carlo configuration of pi s). One sees that the lower envelopes for
different N0s collapse on the same curve if one makes the rescaling N → N/N0).
However, the points for small N0, especially N0 = 1 (green circles), are sparser
and noisier. Thus the scaling equation 3′ (and consequently also (8), (9)) is
confirmed by the measurements on actual Monte Carlo generated configurations.

occur in the series). By contrast, in the present case the theoretical formula (3′) is a continuous
function (red line in figure 3) while the ‘lower envelope’ series is rather sparse (yellow circles
in figure 3 and black points in figures 7–9). The density of points represented in the envelope
increases with N0, as shown by figure 4. The sparseness in the lower envelope implies large
noise in the estimation of Nstop and NS for individual configurations.

New Journal of Physics 12 (2010) 075038 (http://www.njp.org/)

http://www.njp.org/


19

While in real-life situations these phenomena are unavoidable and there is no way to
circumvent them, in numerical studies we can improve the precision of the confrontation of
the Monte Carlo data with the theoretical predictions by the following procedures:

• We can increase N0. Figure 4 demonstrates the efficiency of this procedure (in as far as the
number of points on the lower envelope increases).

• An even more effective procedure is to overlay the lower envelopes obtained from various
runs performed on different configurations. By plotting on the same graph the lower
envelope points obtained from different runs (configurations), one can fill in the gaps and
get a more densely populated curve. In the case where the same value of N is represented
in different runs, one may even take their average and improve the precision and decrease
the noise. In our case, just combining the lower envelopes from three different Monte
Carlo configurations of pi s leads to satisfactory precision. The resulting ‘superposed lower
envelope’ is then a more precise numerical counterpart of equation (3′) that connects
theoretically the size N of the bankruptcy clusters to the global economic index p.

According to the latter procedure, we used the superposed lower envelope to obtain
higher precision numerical estimations of p0c, Nstop and NS by studying its intersection (or
tangency) with the blue ‘individual→collective function’ (2). The results obtained in this
way are closer to the theoretical intersection between the continuous functions (2) and (3′)
than the numerical realizations of individual runs, which sometimes have noise up to 30%.
As seen in figures 5 and 6, and discussed in the next section, the results obtained by using
the superposed lower envelope of just three independent configurations (green circles) are
in excellent agreement with the theoretical predictions (red diamonds). Because the source
of errors is the residual sparseness in the superposed lower envelope, there is no simple
way to evaluate the errors: the plotted points are just the points on the envelope that are
closest to the blue curve (2).

• Another, more drastic, way to avoid errors due to the ‘holes’ and noise in the Monte
Carlo simulation results that connect the size of the bankrupt clusters N to the state
of the economy p is to interpolate the (N, p) points of the superposed envelopes by a
function of the form (3′) (we call it ‘the envelope fitting function’). Such a fit constitutes
a connection to the percolation scaling theoretical model and a direct validation of the
scaling hypothesis (3′). In our case, superposing three configurations for each value of the
parameters proved enough to give a very small standard deviation (Sigma ∼0.1023) of the
points of the envelope from a fit to (3′) with γ ∼ 2.1.

Once the value of γ was established, we computed the intersection of this function (3′) with
‘blue’ individual→collective interaction curves (2) corresponding to various p0 and α. In this
way, we obtained the orange square values of p0c(N0, α, µ) and Nb = NS(N0, p0, α, µ) in
figures 5 and 6. Thus, we could compare those results obtained with the envelope fitting function
to the Monte Carlo simulations (in the form of the superposed envelope) and with the theoretical
results provided by equations (7) and (8). As discussed in the next section, the graphs (figures 5
and 6) show very good agreement between the three methods.

More precisely, we have the following:

• The red diamonds are obtained from the condition that the process (7)–(8) (or,
equivalently, (9)) hangs up at some stage (Nhang-up). This is also equivalent to the condition
that equation (10) (equivalently the system (2), (3′)) has a single real solution.
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Figure 5. Discontinuous transition line between macroscopic crisis and
macroscopic stability in the (α, p0) plane. The points above and to the left of this
line represent states of the system in which the macroscopic crisis is triggered by
just phase I (N0 = 40 exogenously induced bankruptcies). The points in the (α,
p0) plane below and to the right of this line represent states of the system that are
stable under such exogenous strain. One compares the predictions obtained from
the theoretical model (red diamonds) with the ones obtained from the Monte
Carlo data (green circles) and from their fit (orange squares).
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Figure 6. Dependence of the discontinuous transition point NS on the initial state
of the system p0 for fixed α = 1/4 and N0 = 40, µ = 5/2. One compares the
predictions obtained from the theoretical model (red diamonds) with the ones
obtained from the Monte Carlo data (green circles) and from their fit (orange
squares).

• The green circles are obtained by requiring that the superposed lower envelope (of three
independent configurations) meets the blue line (equation (2)) at only one point, whereas
all other points of the envelope are above it (as in figure 8).

• The orange squares are obtained by requiring that the blue line (equation (2)) is at a tangent
to the scaling function (equation (3′)) that fits the superposed lower envelope (as the red
line in figure 3).

See figures 8 and 10 for an illustration of a typical situation generating the points in figure 5.
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Figure 7. Various theoretical and Monte Carlo realizations of the scenario
described in figure 1 for a particular choice of parameters (α = 1/4 and N0 = 40,
µ = 5/2 and p0 < p0c). To keep the figure simple, the (red) horizontal and (blue)
vertical projections, as well as the scaling red line (3′) of figure 1, are not shown
here. The blue continuous line represents the individual→collective interaction
function (2). The red diamonds are the (Nk , pk) points obtained from cycle k of
the theoretical iterative process (7) and (8). The green circles represent the (Nk ,
pk) points for each cycle k of the iterative Monte Carlo algorithm run iterating the
A and B steps on a particular configuration with the same values of α, N0, µ and
p0. One sees that the theoretically predicted red diamonds fall on the same line
as the Monte Carlo obtained green circles. They also fall on the ‘lower envelope’
of the configuration (represented by black points).

More precisely, we have the following:

• The red diamonds are obtained by looking for the smallest starting value Nf for which the
iterative process (9) (equivalently system (7)–(8)) still diverges.

• The green circles are obtained from the intersection (in figure 9) of the superposed lower
envelope (such as the yellow points in figure 3) with the blue line (equation (2)).

• The orange squares are the intersection of the blue line (equation (2)) with the scaling
function (equation (3′)) that fits the superposed lower envelope (as the red line in figure 3).

See figure 9 for an illustration of a typical situation generating the points in figure 6.

4.3. Comparing theoretical predictions with simulation results

In the present section, we compare the results of all of the methods that we used to study the
autocatalytic percolation model. We think of the agent-based formulation of the model as the
standard one, whereas all other formulations (recursive formulae, analytical equations, lower
envelope, superposed lower envelope and envelope fitting function) are useful approximations
to extract the relevant features.

Here, we compare the results from all the methods and find satisfactory agreement. For
some the agreement is not surprising, but for others it contains nontrivial information about
the reliability of the assumptions and the possibility of their future application to real-life
problems.
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Figure 8. Various theoretical and Monte Carlo realizations of the tangent solution
for equation (10). The choice of all other parameters, color conventions, the
Monte Carlo configuration, N0 seeds and the black points of the ‘lower envelope’
are identical to figure 7. The blue curve (2) differs only in the value of the
factor p0, which is taken such that p0 ∼ p0c(α, µ, N0). More precisely, p0 is
chosen such that one single (black) point Nhang-up = 115 of the lower envelope
falls on the blue curve (2). Thus, the Monte Carlo run (based on A and B
iterations) is ‘undecided’ between stopping at Nhang-up = 115 (light green circles)
or continuing beyond it (dark green) to ∞. This is further illustrated in figure 10.
The theoretical iterations (7)–(8) represented by the red diamonds behave
similarly: they (slow down or even) stop in the region where they (approach)
touch the blue line (2).

Figures 7–9 are the realization of the processes described abstractly in figures 1 and 2.
More precisely, they contain the results of iterative steps (Nk , pk) in the case of percolation, in
the case where there are obstructions to the free propagation of the crisis and in the limit case
separating between them.

Figures 7–9 show, in the same framework, all the methods that we have been using so
far in order to understand, interpret and control our autocatalytic percolation model. The green
circles are the result of the Monte Carlo procedure (mesoscopic algorithm), the red diamonds
are the result of the recursive iterative process (7) and (8), and the black points are the result
of the lower envelope for a particular configuration. As illustrated in these figures, there is a
very reasonable degree of agreement within the methods, even when only one configuration is
used to represent the Monte Carlo method. However, as will be shown and explained in the next
section, the outcomes from a single configuration exhibit occasional noisy departures from the
theoretical predictions.

We can now discuss in more detail the results displayed in figures 5 and 6. These figures
compare the values of the parameters separating regions of economic stability from regions of
the parameters where the crisis propagates throughout the entire system.

Figure 5 refers to crises that were triggered only by a phase I: the exogenous bankruptcy
of N0 independent firms. In this case, in the region below and at the right of the points plotted
in figure 5, the system is stable (the crisis does not percolate). This corresponds to the situations
described in figures 2 and 9. For the parameter ranges above and at the left of the points plotted
in figure 5, the system continues to collapse indefinitely after the first N0 bankruptcies. This
corresponds to the situations described in figures 1 and 7.
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Figure 9. Various theoretical and Monte Carlo realizations of the scenario
described in figure 2. The choice of all other parameters, color conventions,
the configuration of pi s, N0 seeds and the black points of the ‘lower envelope’
are identical to figures 7 and 8. The blue line (2) differs from figures 7 and 8
only in the value of the factor p0, which is taken (as in figure 2) such that
p0 > p0c. Consequently, system (2)–(3′) has two real solutions Nstop and NS,
which correspond to the intersections of the blue (2) and red (3′) curves of
figure 2. Nstop and NS are reliably reproduced in figure 9 by the (black) points of
the lower envelope closest to the blue curve (2). The red diamonds are obtained
from the theoretical iterative process (7)–(8) started at the initial N value N = N0.
As seen in the figure, the iterations converge to N = Nstop. The pink diamonds
are obtained from the same process (7)–(8) but starting at Nf just above NS. As
one sees in the figure, this run diverges towards N = ∞. The yellow diamonds
are obtained by starting the (7)–(8) iterations just below NS. This theoretical run
does not correspond to a real percolation simulation because the iterations result
in N decreasing towards Nstop. Indeed, the green circles obtained by iterating the
Monte Carlo process A and B cover only outside the stability range (Nstop, NS).
The run initiated by a phase I starting at N0 covers the range (N0, Nstop), while
the run with a phase II with an Nf just above NS diverges to N = ∞. One sees
that the theoretically predicted diamonds fall on the same line with the Monte
Carlo obtained green circles. The values for Nstop, NS obtained by solving the
system (2)–(3′), from the theoretical recursion (7)–(8), from the Monte Carlo runs
A and B and from the intersection of the lower envelope series with curve (2) are
all in good agreement. However, for precise comparison (figures 5 and 6) of the
theory with the Monte Carlo numerical results, one should use the superposed
envelopes of a few configurations rather than a single lower envelope series.

The points marked in figure 5 correspond to figure 8:

• The red diamonds in figure 5 are obtained by checking which is the highest p0 for which
the theoretical iterative process (7) and (8) (represented by the red diamonds in figure 8)
still diverges.

• The green circles were obtained by finding the values of α and p0 for which the
individual→collective interaction function (2) touches the superposed lower envelope at
just one point (as the black point at N = 127 in figure 8). We used a superposed lower
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Figure 10. This figure exemplifies a situation where the slightest change in p0 or
in the value of pi at Nhang-up = 115 has the effect of either stopping the process
(light green circles) or ensuring its continuation to macroscopic scales (dark
green circles). In fact, the values of p0 for the two runs are so close that, for
the first six iterations after the initiation of the crisis by N0 = 40 exogenously
induced bankruptcies, the light and dark green circles coincide. The behavior
starts differing at the 7th cycle, when Nhang-up = 115 is either contaminated or
not, depending on an infinitesimal change in its pi or p0 (see figure 8). Following
this, in the run where pi > p0115−1/4, the number of bankruptcies diverges to ∞,
while in the run where pi < p0115−1/4, the bankruptcies cascade stops.

envelope obtained by overlying the lower envelopes of three Monte Carlo generated
configurations.

• The orange squares were obtained by requiring that the blue line equation (2) is at a tangent
to the envelope fitting function of the form (3′) that best fits the superposed lower envelope.
More precisely, we used the fitting function (3′) with an exponent γ that minimizes the
square standard deviation of the points of the superposed lower envelope (as the red line
fits the yellow points in figure 3).

Figure 6 describes the stability of the system in the presence of an exogenous initial
stress that includes a phase II that leaves the system with N0 bankruptcy clusters totalling Nf

bankruptcies. For values of Nf lower than the points plotted in figure 6, the system is still stable
(there is no crisis percolation). For values of Nf larger than the ones plotted in figure 6, the crisis
spreads throughout the entire system. More explicitly, we have the following:

• The red diamonds are obtained by determining, for each p0, which is the lowest starting
point Nf = NS for which the theoretical iterative process (7)–(8) still diverges (similar to
the divergent chain of vertical and horizontal projections on the right side of figure 2).

• The green circles are the intersections of the blue individual→collective interaction
curve (2) with the superposed lower envelope of three particular configurations. This is
similar to the intersection of the blue curve with the black points series in figure 9 (except
that in figure 9 the black points are obtained from only one envelope rather than the
superposing three). Actually, since the envelope is a discrete series, its closest point to
curve (2) is taken as NS.
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• The orange squares are obtained as the intersection of the blue individual→collective
interaction curve (2) with the curve of form (3′) that interpolates best (minimizes the
standard deviation to) the superposed lower envelope. This is similar to the way in which
we obtained the NS point in figure 2.

The agreement between the p0c and NS values obtained in figures 5 and 6 by various theoretical
and Monte Carlo procedures (as well as the agreement on the results displayed by figures 7–9)
suggests that our modeling framework can be used to predict the crisis percolation scenarios
based on the knowledge of the general properties of the economic agents’ connectivity (3), the
individual→collective interactions (2) and the collective→individual effects (1).

5. Stability of the system and policy implications

The processes that we study in the present paper are of quite a special type. On the one hand,
they do not have the linear deterministic dynamics normally used in economics and financial
narratives. On the other hand, nor are they at the statistical mechanics extreme where very robust
averages over large ensembles are considered.

The triggering of a crisis and the propagation of the crisis contagion cannot be described by
a clear chain of individual causes and effects. Yet the number of individual events and agents that
can dramatically affect the outcome of a crisis can be too small to admit an average treatment.
In order to use the tools offered by the present approach, the policy makers will have to make
a paradigm shift and accept the concept of distributed causality. More precisely, it makes no
sense to ask which of the N0 initial failures is responsible for the crisis reaching systemic size.
It also does not make sense to ask which of the Nf forced contagion failures that take the process
beyond the Stauffer stability range is the key to systemic collapse. It is clear that not all of the
agents are equally responsible: agents on the ‘lower envelope’ are clearly more likely to become,
under the slightest intervention, obstructions to bankruptcy wave propagation.

In fact, one sees from figure 8, and from figure 10, that a rather limited number of points
play crucial roles in the unfolding of the crisis. Thus, on top of the rather precise statistical
characteristics of the systems, there are a few events and agents (e.g. around Nhang-up) that can
change quite dramatically a particular crisis history. For instance, in figures 8 and 10, one sees
that infinitesimal changes in one pi (e.g. p115) can make the difference between the process
stopping or diverging.

From these examples, one sees that the detailed study of the stability region is necessary
to assess system stability against crisis percolation, and to defend a stable system against
exogenous attacks or catastrophes.

Indeed, a system with an economic index p0 < p0c(α,µ,N0) has no Stauffer stability range
and no chance to survive: even one accidental bankruptcy would throw it into a self-sustaining
fast propagating autocatalytic percolation process. In order to save the economy, policy makers
have to intervene immediately if p0 < p0c(α,µ,N0), even if the naive static percolation stability
condition p0 > pc is fulfilled (here, pc corresponds to a potential bankrupt firm’s density equal
to the critical percolation density). This is, of course, because the naive static percolation
threshold ρc does not take into account the individual→collective equation (2) influence of
the bankruptcies on the global index p and the resulting autocatalytic loop.

Once the policy makers ensure that at all times the initial global index p0 > p0c(α,µ,N0),
one is assured that there exists a Stauffer region of stability. This is a very important tool to
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defend system stability under exogenous attacks/catastrophes/crises. Indeed, on the one hand
one has to identify whether the value N0 for which p0 = p0c(α,µ,N0) is not so dangerously
small as to make it realistically realizable. On the other hand, even if one has incurred a number
N0 of exogenously induced bankruptcies for which the safety condition p0 > p0c(α,µ,N0) is
fulfilled, one has to take care that the external conditions do not induce forced contagion
of bankruptcies to their partners (neighboring sites). In particular, one has to be particularly
cautious when the total number of bankruptcies Nf approaches NS(N0,p0,α,µ). As long as one
is in the Stauffer stability region, one can still stop the process by very limited intervention that
neutralizes the exogenously forced contagion of the neighbors of recently bankrupt sites.

This opportunity should be grabbed in time, because later many firms may become
endogenously potential failures and their salvaging may become less justified, more costly and
ultimately logistically impossible (if there are too many of them).

There are other positive conclusions from the existence of the Stauffer stability region. As
we have seen, even if a bankruptcy contagion wave continues to propagate autocatalytically
self-sustained for quite a while (sometimes up to 4N0), this does not necessarily mean that the
macroscopic crisis is on its way: it could be that the wave will slow down and stop by itself
as one approaches N = Nstop(N0,p0,α,µ). However, the mere slowing down of the contagion
rate is not a guarantee that the percolation will stop: it may just indicate that one is in the slow
region around Nhang-up where the red (3′) and the blue (2) lines are close to one another or, in
algebraic terms, that N is close to the real part of the possibly imaginary solutions of the Stauffer
equation.

6. Conclusions

In the present paper, we have studied the implications of the action of the collective on its own
individual components. This influence, sometimes termed top-down, has long been recognized
in the social sciences, but its formal study has been elusive in the agent-based models for quite
a while.

As opposed to physical systems, where the interactions are usually individual↔individual
in social and economic systems, the individual→collective and collective→individual effects
are significant (Solomon et al 2000, Hohnisch et al 2008, Cantono and Silverberg 2009).

In the present paper, we have developed a method to express quantitatively and study
analytically, numerically and by simulation the effects of the autocatalytic loop generated by the
influence of the collective on the individual states, and of the individual states on the collective.

This autocatalytic loop is responsible for the emergence and resilience of complex
collective macroscopic phenomena out of simple elementary interactions. Moreover, the
autocatalytic loop selects a limited number of parameters as relevant to the macroscopic
behavior of the system. We have chosen as an illustration of this mechanism the social/market
percolation framework, as presented in recent works (Antonelli 1996, Goldenberg et al
2000, Bornholdt 2001, Aleksiejuk and Holyst 2001, Weisbuch et al 2001, Erez et al 2005,
Goldenberg et al 2005, Yaari et al 2006, Erez et al 2007, Frenken et al 2008, Hohnisch
et al 2008, Sieczka and Holyst 2009, Lorenz et al 2009). We consider here the example
of the economic crisis and bankruptcy contagion. We give policy suggestions about how to
forecast, prevent, control and eventually stop the propagation of a distress to systemic scales. In
order to address these issues quantitatively, our model includes the autocatalytic feedback loop

New Journal of Physics 12 (2010) 075038 (http://www.njp.org/)

http://www.njp.org/


27

between individual→collective, collective→individual and individual↔individual effects. The
integration of these features into a recursive autocatalytic percolation cycle leads to a complete
reconsideration of real-life policy implications. In the present paper, we have provided the
theoretical framework necessary for achieving it using agent-based modeling and analytical
results. We have tested analytical and numerical predictions with Monte Carlo simulations and
found good agreement among all the methods. However, the processes that we have studied are
of a quite special type and require careful interpretation at the level of specific realizations. On
the one hand, they do not have the linear deterministic dynamics usually used in economics
and financial narratives. The triggering of a crisis and the propagation of the crisis contagion
cannot be described by a linear chain of individual causes and effects. On the other hand, nor are
they at the statistical mechanics extreme where only robust averages over large ensembles are
considered: the number of individual events and agents that can dramatically affect the outcome
of a crisis can be too small to admit an average treatment. Indeed, we have shown how a limited
number of elements of a system play a crucial role in the unfolding of the crisis.

We have also shown that, as opposed to the usual percolation transition that is continuous,
in our model the system’s resistance undergoes discontinuous transitions between a few possible
regimes. Thus, depending on the initial state of the system, the interactions and heterogeneity
of its elements, and the extent of the disturbance, one experiences discontinuous jumps between
the following regimes:

• If the disturbance acts only upon a few isolated elements, then the system still has a chance
to survive, provided that the propagation of the disturbance is not too widespread. It might
be reasonable at this stage to hamper the propagation either by rehabilitating the isolated
falls or by reinforcing the nearest neighbors.

• Unfortunately, additional pressures may drive the system to a forced propagation of the
disease anyway. Yet, this same disease may still be confined to a limbo, either by the
resilience of the system itself or by pushing the general state of the system upwards.

• However, under certain circumstances, the valleys of tears can percolate and overflow
to flood the entire system. Without external intervention, the propagation of the crisis is
inevitable.

Emergency measures, such as those needed in this situation, fall into two categories: very
expensive and general, or efficient and specific, the latter being feasible provided that enough
information is available.

In future, we will validate the generic use of this kind of theoretical model to the real
propagation of contagion in actual financial and economics systems.
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