

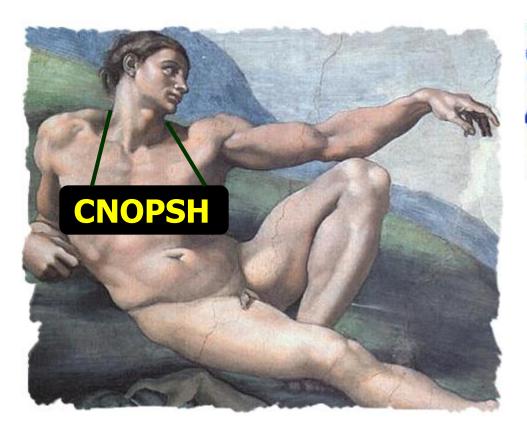
# Ipotesi chimica sull'origine della vita:

# dal Big Bang alla comparsa dei primi organismi viventi

Piero Ugliengo

Università di Torino Dip. Chimica IFM

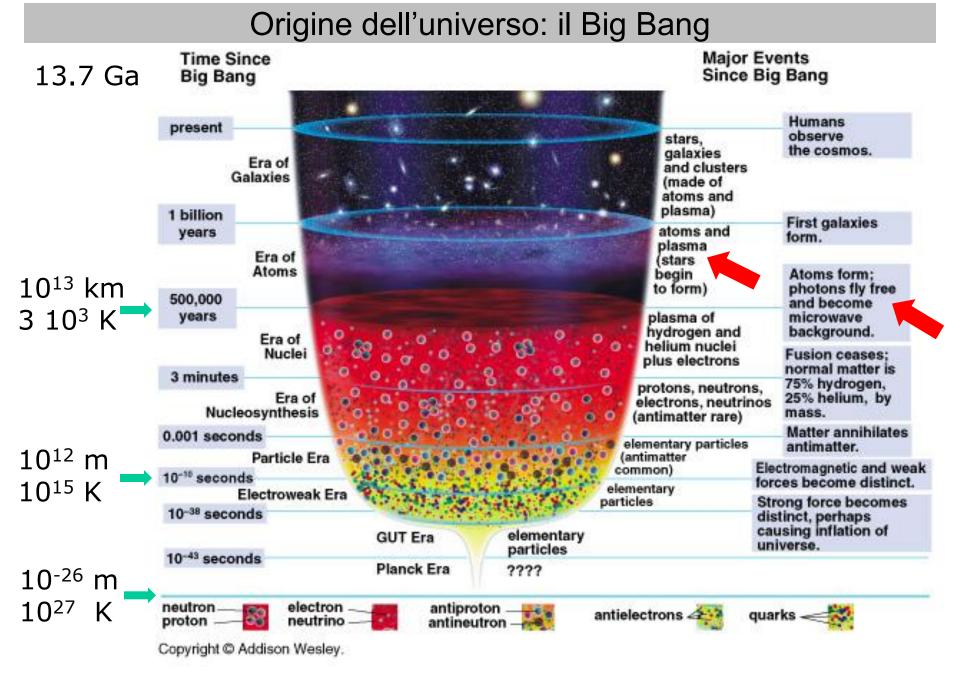





#### Alcune domande fondamentali

- Da dove abbiamo avuto origine?
- Come è sorta la vita?
- Quanto è antica la vita?
- Si può sintetizzare una cellula?

Sono domande troppo grandi per la scienza?


# Caratteri comuni agli organismi







Il **98%** della massa di un organismo è costituita da **C**, **N**, **O**, **P**, **S** e **H**. Una spolverata di K, Mg, Ca, Mn, Fe, Co, Cu, Zn, Si e Cl è però necessaria perché tutto funzioni



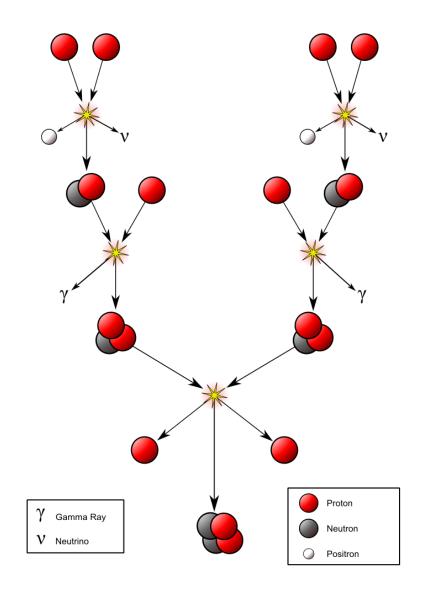
# La tabella periodica degli elementi

| hydrogen 1 H 1.0079 |                     | All'inizio solo H |                    |                      |                    |                      |                      |                     |                   |                     | helium<br>2<br><b>He</b><br>4,0026 |                   |                    |                    |                      |                    |                    |                 |
|---------------------|---------------------|-------------------|--------------------|----------------------|--------------------|----------------------|----------------------|---------------------|-------------------|---------------------|------------------------------------|-------------------|--------------------|--------------------|----------------------|--------------------|--------------------|-----------------|
| 3                   | beryllium<br>4      |                   |                    |                      |                    |                      |                      |                     |                   | -1359               | N                                  |                   | boron<br><b>5</b>  | carbon<br>6        | nitrogen<br><b>7</b> | oxygen<br><b>8</b> | fluorine<br>9      | neon<br>10      |
| lii                 | Be                  |                   |                    |                      |                    |                      |                      |                     |                   | A.                  |                                    |                   | B                  | ů                  | Ń                    | Ô                  | F                  | Ne              |
| 6.941               | 9.0122              |                   |                    |                      |                    | 7                    | <b>\</b> :           |                     | 11.               | 1 .                 | 1 - : -                            |                   | 10.811             | 12.011             | 14,007               | 15,999             | 18,998             | 20,180          |
| sodium              | magnesium<br>12     |                   |                    |                      |                    | L                    | ımı                  | rij                 | <i>IVI e</i>      | nae                 | leje                               | $\mathcal{V}$     | aluminium<br>13    | silicon<br>14      | phosphorus<br>15     | sulfur<br>16       | chlorine<br>17     | argon<br>18     |
| Na                  | 15076               |                   |                    |                      |                    |                      |                      | v                   |                   |                     | U                                  |                   |                    | Si                 | P                    | S                  | CI                 | _               |
| 22.990              | Mg                  |                   |                    |                      |                    |                      |                      |                     |                   |                     |                                    |                   | AI<br>26.982       | 28.086             | 30.974               | 32.065             | 35.453             | Ar<br>39.948    |
| potassium           | calcium             |                   | scandium           | titanium             | vanadium           | chromium             | manganese            | iron<br>26          | cobalt            | nickel              | copper                             | zinc              | gallium            | germanium          | arsenic              | selenium           | bromine            | krypton         |
| 19                  | 20                  |                   | 21                 | 22                   | 23                 | 24                   | 25                   |                     | 27                | 28                  | 29                                 | 30                | 31                 | 32                 | 33                   | 34                 | 35                 | 36              |
| K                   | Ca                  |                   | Sc                 | Ti                   | V                  | Cr                   | Mn                   | Fe                  | Co                | Ni                  | Cu                                 | Zn                | Ga                 | Ge                 | As                   | Se                 | Br                 | Kr              |
| 39.098<br>rubidium  | 40.078<br>strontium |                   | 44.956<br>yttrium  | 47.867<br>zirconium  | 50.942<br>niobium  | 51.996<br>molybdenum | 54.938<br>technetium | 55.845<br>ruthenium | 58,933<br>rhodium | 58.693<br>palladium | 63.546<br>silver                   | 65,39<br>cadmium  | 69.723<br>indium   | 72.61<br>tin       | 74.922<br>antimony   | 78.96<br>tellurium | 79.904<br>iodine   | 83.80<br>xenon  |
| 37                  | 38                  |                   | 39                 | 40                   | 41                 | 42                   | 43                   | 44                  | 45                | 46                  | 47                                 | 48                | 49                 | 50                 | 51                   | 52                 | 53                 | 54              |
| Rb                  | Sr                  |                   | Υ                  | Zr                   | Nb                 | Мо                   | Tc                   | Ru                  | Rh                | Pd                  | Ag                                 | Cd                | In                 | Sn                 | Sb                   | Te                 |                    | Xe              |
| 85.468<br>caesium   | 87.62<br>barium     |                   | 88.906<br>lutetium | 91.224<br>hafnium    | 92,906<br>tantalum | 95.94<br>tungsten    | [98]<br>rhenium      | 101.07<br>osmium    | 102.91<br>iridium | 106.42<br>platinum  | 107.87<br>gold                     | 112.41<br>mercury | 114.82<br>thallium | 118.71<br>lead     | 121.76<br>bismuth    | 127.60<br>polonium | 126.90<br>astatine | 131.29<br>radon |
| 55                  | 56                  | 57-70             | 71                 | 72                   | 73                 | 74                   | 75                   | 76                  | 77                | 78                  | 79                                 | 80                | 81                 | 82                 | 83                   | 84                 | 85                 | 86              |
| Cs                  | Ba                  | *                 | Lu                 | Hf                   | Ta                 | W                    | Re                   | Os                  | Ir                | Pt                  | Au                                 | Hg                | TI                 | Pb                 | Bi                   | Po                 | At                 | Rn              |
| 132.91              | 137.33              |                   | 174.97             | 178.49               | 180.95             | 183.84               | 186.21               | 190.23              | 192.22            | 195.08              | 196.97                             | 200.59            | 204.38             | 207.2              | 208.98               | [209]              | [210]              | [222]           |
| francium<br>87      | radium<br>88        | 89-102            | lawrencium<br>103  | rutherfordium<br>104 | dubnium<br>105     | seaborgium<br>106    | bohrium<br>107       | hassium<br>108      | meitnerium<br>109 | ununnilium<br>110   | unununium<br>111                   | ununbium<br>112   |                    | ununquadium<br>114 |                      |                    |                    |                 |
| Fr                  | Ra                  | * *               | Lr                 | Rf                   | Db                 | Sg                   | Bh                   | Hs                  | Mt                | Uun                 | Uuu                                | Uub               |                    | Uuq                |                      |                    |                    |                 |
| [223]               | [226]               |                   | [262]              | [261]                | [262]              | [266]                | [264]                | [269]               | [268]             | [271]               | [272]                              | [277]             |                    | [289]              |                      |                    |                    |                 |

\*Lanthanide series

\* \* Actinide series

| 3 | lanthanum<br><b>57</b> | cerium<br>58 | praseodymium<br><b>59</b> | neodymium<br><b>60</b> | promethium<br>61 | samarium<br><b>62</b> | europium<br>63 | gadolinium<br><b>64</b> | terbium<br><b>65</b> | dysprosium<br>66 | holmium<br>67 | erbium<br>68 | thulium<br><b>69</b> | ytterbium<br><b>70</b> |
|---|------------------------|--------------|---------------------------|------------------------|------------------|-----------------------|----------------|-------------------------|----------------------|------------------|---------------|--------------|----------------------|------------------------|
|   | La                     | Ce           | Pr                        | Nd                     | Pm               | Sm                    | Eu             | Gd                      | Tb                   | Dy               | Но            | Er           | Tm                   | Yb                     |
| L | 138.91                 | 140.12       | 140.91                    | 144.24                 | [145]            | 150.36                | 151.96         | 157.25                  | 158.93               | 162.50           | 164.93        | 167.26       | 168.93               | 173.04                 |
| Г | actinium               | thorium      | protactinium              | uranium                | neptunium        | plutonium             | americium      | curium                  | berkelium            | californium      | einsteinium   | fermium      | mendelevium          | nobelium               |
| ı | 89                     | 90           | 91                        | 92                     | 93               | 94                    | 95             | 96                      | 97                   | 98               | 99            | 100          | 101                  | 102                    |
|   | Ac                     | Th           | Pa                        | U                      | Np               | Pu                    | Am             | Cm                      | Bk                   | Cf               | Es            | Fm           | Md                   | No                     |
| ı | [227]                  | 232.04       | 231.04                    | 238.03                 | [237]            | [244]                 | [243]          | [247]                   | [247]                | [251]            | [252]         | [257]        | [258]                | [259]                  |


#### Le stelle: fucine di elementi chimici

A causa della attrazione gravitazione la nebula fatta da H si contrae e si riscalda. La temperatura sale a 20 MK

#### Reazione pp

$$^{1}H + ^{1}H \rightarrow ^{2}H + e^{+} + v_{e}$$
 $^{2}H + ^{1}H \rightarrow ^{3}He + \gamma + 5.49 \text{ MeV}$ 
 $^{3}He + ^{3}He \rightarrow ^{4}He + ^{1}H + ^{1}H + 12.86 \text{ MeV}$ 

1 *p* si converte in 10<sup>10</sup> anni. La temperatura è 10-14 MK. Difetto di massa



## Le stelle: fucine di elementi chimici

#### Reazione pp 15 MK

$${}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + v_{e}$$
 ${}^{2}H + {}^{1}H \rightarrow {}^{3}He + \gamma + 5.49 \text{ MeV}$ 
 ${}^{3}He + {}^{3}He \rightarrow {}^{4}He + {}^{1}H + {}^{1}H + 12.86 \text{ MeV}$ 

#### Reazione triplo- $\alpha$ 20 MK

$$^{4}$$
He +  $^{4}$ He ↔  $^{8}$ Be  
 $^{8}$ Be +  $^{4}$ He ↔  $^{12}$ C + γ + 7.367 MeV  
 $^{12}$ C +  $^{4}$ He →  $^{16}$ O + γ

#### Fusione C 600 MK

$$^{12}\text{C} + ^{12}\text{C} \rightarrow ^{24}\text{Mg} + \gamma$$
 $\rightarrow ^{23}\text{Mg} + n$ 
 $\rightarrow ^{23}\text{Na} + ^{1}\text{H}$ 
 $\rightarrow ^{20}\text{Ne} + ^{4}\text{He}$ 
 $\rightarrow ^{16}\text{O} + 2^{4}\text{He}$ 

#### Fusione Ne

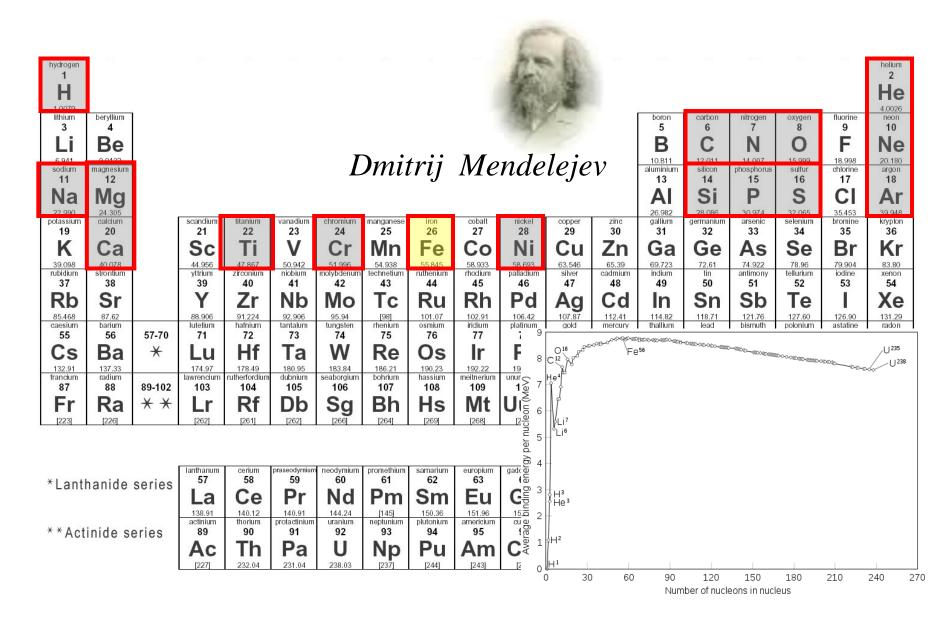
$$^{20}$$
Ne +  $\gamma \rightarrow ^{16}$ O +  $^{4}$ He  
 $^{20}$ Ne +  $^{4}$ He  $\rightarrow ^{24}$ Mg +  $\gamma$ 

#### Fusione O 1500 MK

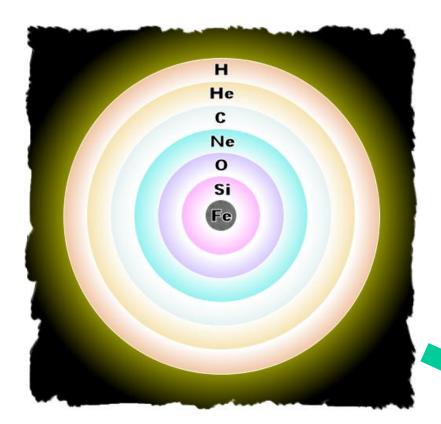
$$^{16}O + ^{16}O \rightarrow ^{32}S + \gamma$$

$$\rightarrow ^{31}S + n$$

$$\rightarrow ^{31}P + ^{1}H$$

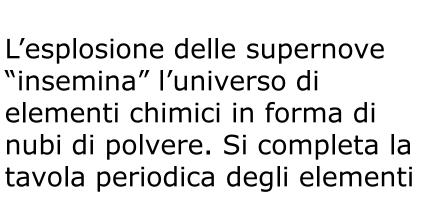

$$\rightarrow ^{28}Si + ^{4}He$$

$$\rightarrow ^{24}Mg + 2^{4}He$$


#### Fusione di Si 3000 MK

$$^{28}\text{Si} \rightarrow ^{32}\text{S} \rightarrow ^{36}\text{Ar} \rightarrow ^{40}\text{Ca} \rightarrow ^{44}\text{Ti} \rightarrow ^{48}\text{Cr} \rightarrow ^{52}\text{Fe} \rightarrow ^{56}\text{Ni} \longrightarrow ^{56}\text{Fe}$$

# Elementi chimici formatisi nelle giganti rosse




# La struttura a cipolla delle giganti rosse (15 Ms)

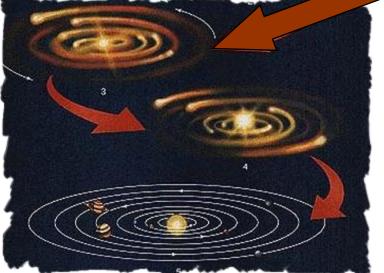


| Reazione     | Tempo      |
|--------------|------------|
| Idrogeno (H) | 10 Ma      |
| Elio (He)    | 1 Ma       |
| Carbonio (C) | 300 anni   |
| Ossigeno (O) | 200 giorni |
| Silicio (Si) | 2 giorni   |

Supernova 1987A



# Dalla polvere stellare al sistema solare




tempo

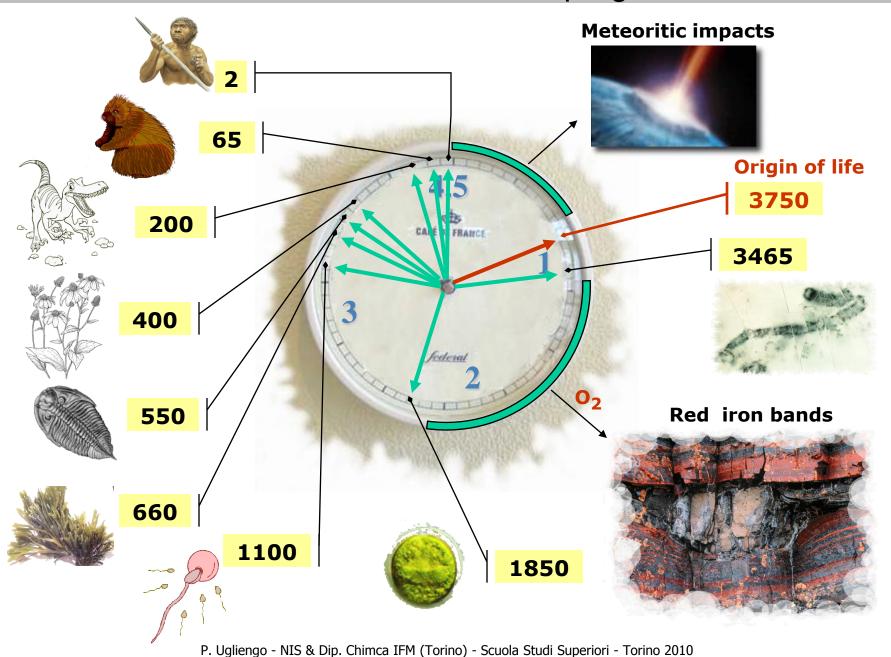
**Gas rarefatto** 

**Proto-sole** 

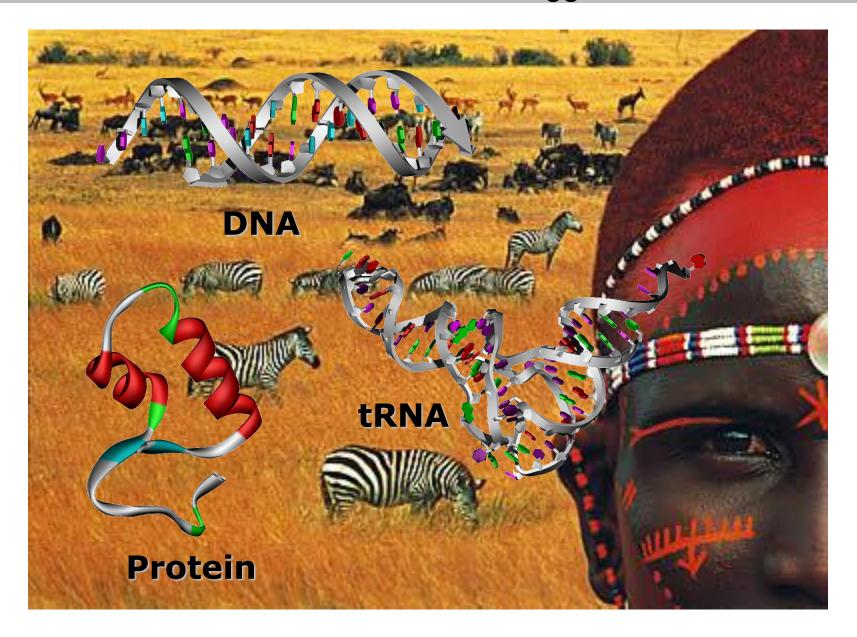
**Disco rotante** 



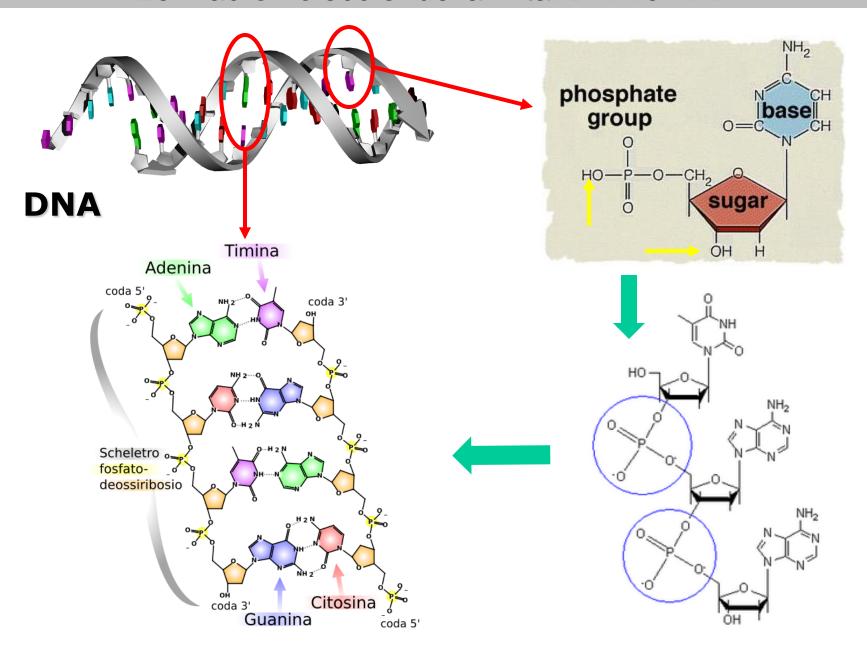
Dalla polvere stellare + H & He per attrazione gravitazionale e formazione di planetesimi si arriva al Sole e i suoi pianeti


Rotation axis

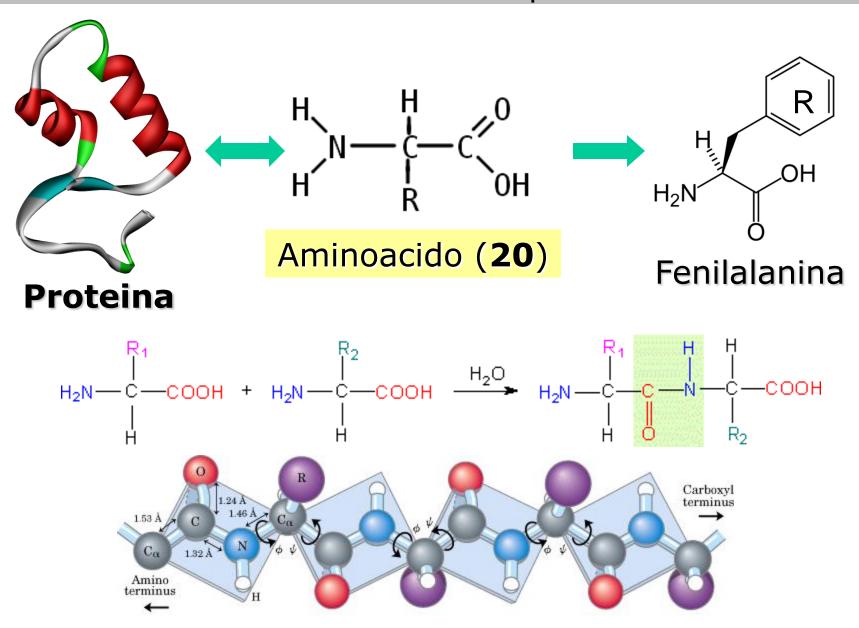
Rotation axis


La Terra è vecchia di ≈ **4.5 Ga** 

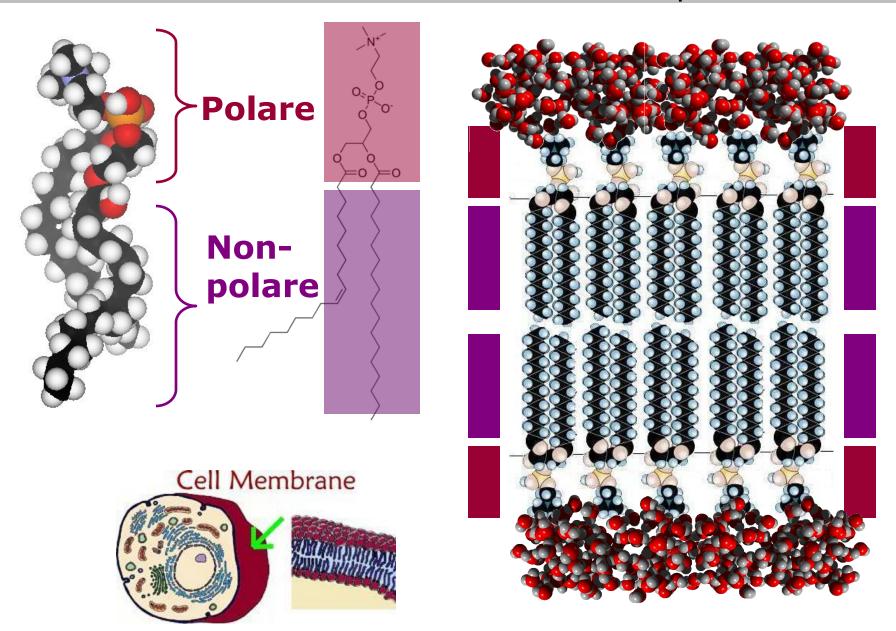
E la vita quanto è vecchia?


# La vita sulla Terra: il crono-programma




# Il mondo vivente oggi

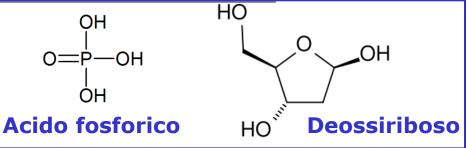



# Le macromolecole della vita: DNA e RNA



# Le macromolecole della vita: proteine & enzimi

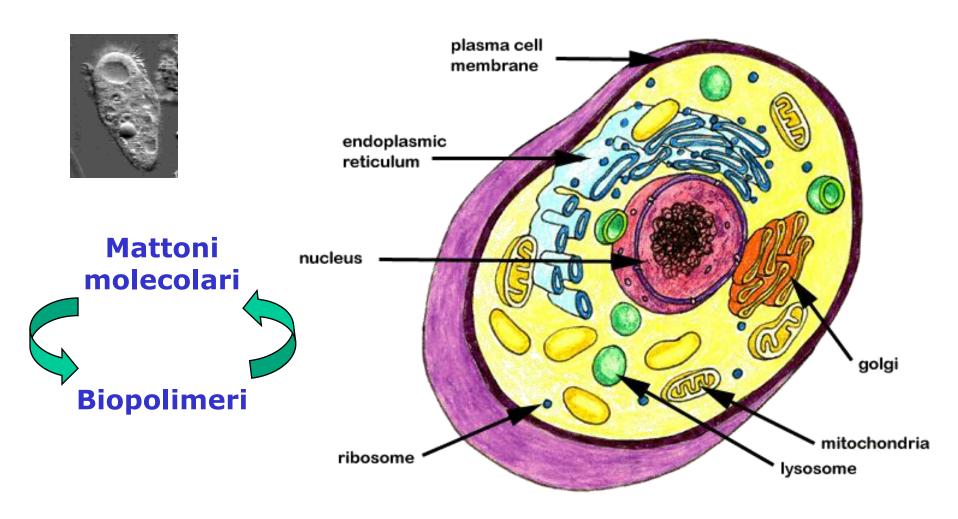



# Le macromolecole della vita: fosfolipidi



## I mattoni molecolari della vita

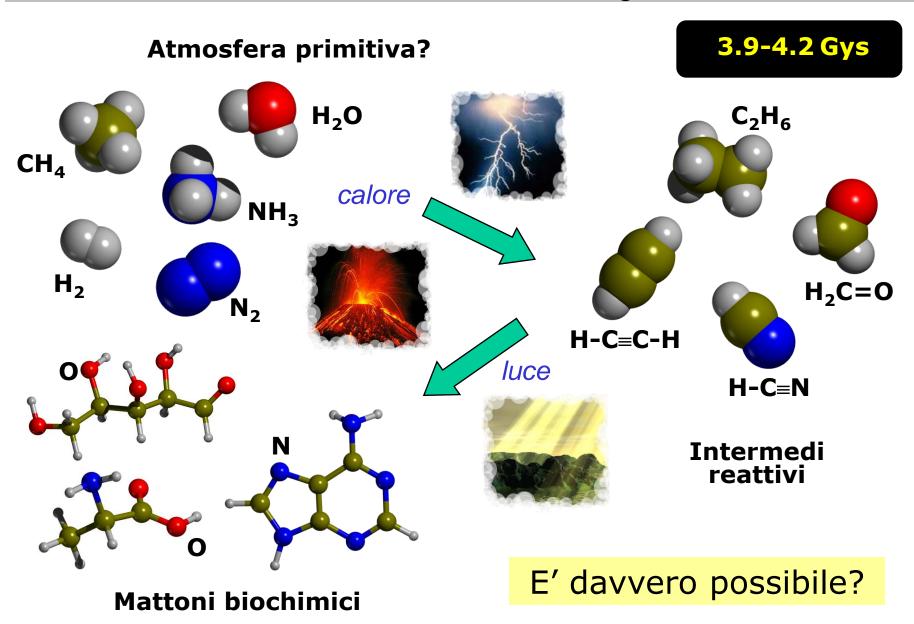
#### **Nucleobasi**


#### **Zuccheri & Fosfati**



#### Lipidi & P-lipidi

#### **Aminoacidi**

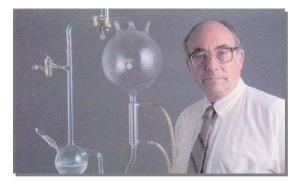

## La fabbrica della vita sono le cellule



Come sintetizzare i mattoni molecolari senza le cellula?

Quanto è vecchio il metabolismo?

# Sintesi abiotica di molecole organiche




# Eyjafjallajökull volcano Iceland 2010



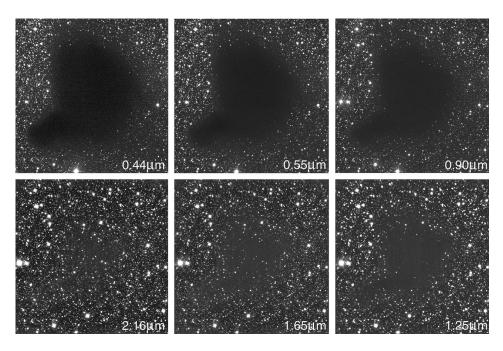
# L'esperimento di Stanley Miller del 1953

# **EXPERIMENT** Question: Can organic compounds be generated under conditions similar to those that existed on primeval Earth? METHOD H<sub>2</sub>O $NH_3$ Ha "Atmospheric" Cold compartment water "Oceanic" compartment Condensation -Heat RESULTS Conclusion: The organic building blocks of life are generated in the probable atmosphere of early Earth.



Miller S.L.

Production of amino acids under possible primitive Earth conditions


Science 117:528, **1953** 

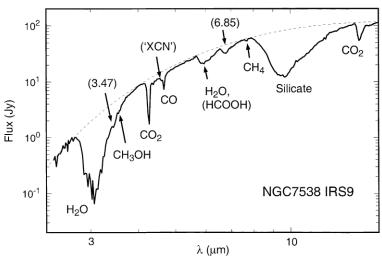
#### Atmosfera meno riducente

CH<sub>4</sub> CO CO<sub>2</sub> H<sub>2</sub>O N<sub>2</sub> H<sub>2</sub>S

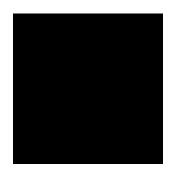
- 17 dei 20 amino acidi
- tutte le purine e pirimidine
- riboso molto difficile
- nucleosidi molto difficili
- sintesi di Strecker

# Sintesi negli spazi profondi: le polveri interstellari




La "Nube nera" *B68*. Le particelle di polvere diffondono la luce visibile delle stelle remote. Lunghezze d'onda più lunghe penetrano la nube

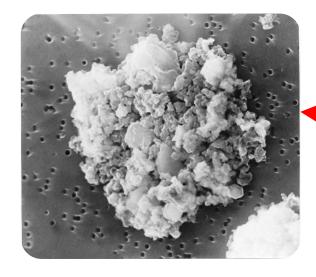
Copyright by ESO. http://antwrp.gsfc.nasa.gov/apod/ap990511.html


Lo spettro infrarosso dello osservatorio spaziale dell'oggetto stellare NGC7538 IRS9. Copyright ASPCS, 122, San Francisco CA



Polvere cosmica della *Nebula Testa* di cavallo (Hubble Space Telescope). Courtesy by NASA and ESA.




## La missione NASA Stardust sulla cometa 81P/Wild 2



Il 2 Gennaio 2004, la sonda spaziale Stardust della NASA vola attraverso la coda (polvere e gas) della cometa 81P/Wild 2, e cattura migliaia di particelle cometarie.



Supporto di Aerogel montato su Stardust per catturare le particelle di polvere



Scienziati della NASA trovano la Glicina nei granuli

Stardust ha ritornato la capsula di aerogel sulla Terra



Particelle di polvere cometaria intrappolate nell'aerogel

J. E. Elsila et al Meteoritics & Planetary Science 44, Nr 9, 1323–1330 (2009)

Courtesy by JPL NASA

#### Struttura delle Interstellar dust particle (IDP)

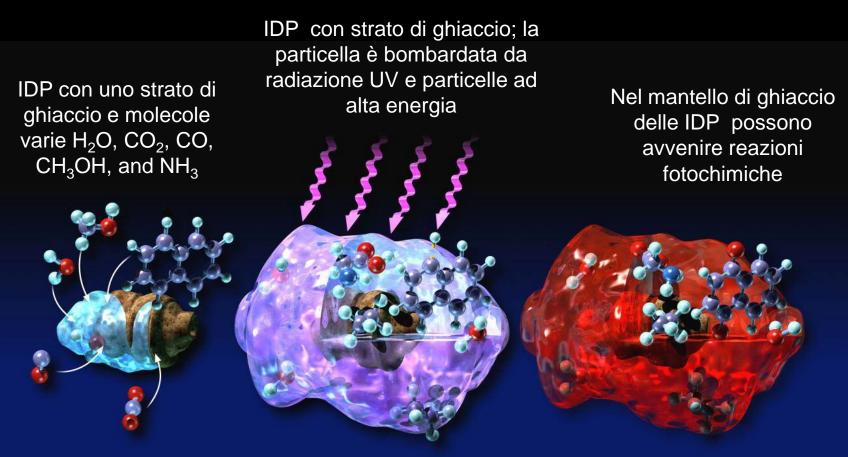
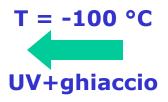


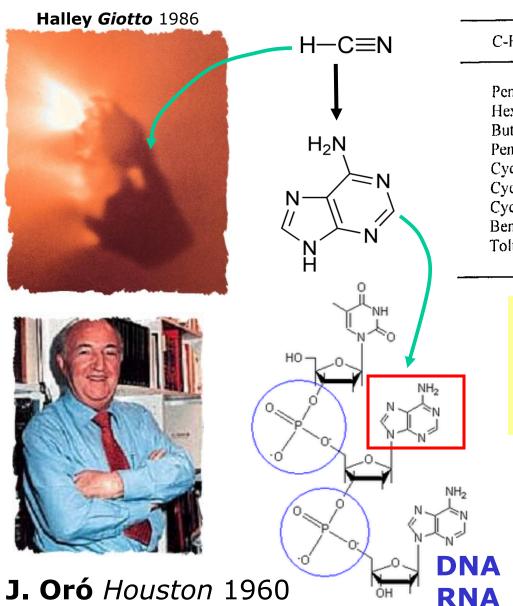

Image courtesy of Andy Christie, Slimfilms.com, Scientific American.

## Sintesi molecolare nelle nubi interstellari


| - |                             |                  |                                       | n                  | umber of at                       | oms                                |                                   |                                       |
|---|-----------------------------|------------------|---------------------------------------|--------------------|-----------------------------------|------------------------------------|-----------------------------------|---------------------------------------|
|   | 2                           | 3                | 4                                     | 5                  | 6                                 | 7                                  | 8                                 | 9                                     |
|   | $H_2$                       | H <sub>2</sub> O | NH <sub>3</sub>                       | SiH <sub>4</sub>   | CH₃OH                             | CH₃CHO                             | HCOOCH₃                           | CH <sub>3</sub> CH <sub>2</sub> OH    |
|   | ΟĤ                          | H <sub>2</sub> S | H <sub>3</sub> O+                     | CH₄                | NH <sub>2</sub> CHO               | $CH_3NH_2$                         | CH <sub>2</sub> OHCHO             | $(CH_3)_2O$                           |
|   | SO                          | $S\tilde{O}_2$   | H <sub>2</sub> CO                     | CHOŎH              | CH₃CN                             | CH <sub>3</sub> CCH                | CĤ₃C₂CN                           | CH₃CH₂CN                              |
|   | SO <sup>+</sup>             | $HN_2^{-+}$      | H <sub>2</sub> CS                     | $HC \equiv CCN$    | CH <sub>3</sub> NC                | CH <sub>2</sub> CHCN               | C <sub>7</sub> H                  | $H=(C\equiv C)_3CN$                   |
|   | SiO                         | HNO              | HÑCO                                  | CH <sub>2</sub> NH | CH₃SH                             | $HC_4CN$                           | $H_2C_6$                          | $CH_3(C\equiv C)_2H$                  |
|   | SiS                         | SiH <sub>2</sub> | HNCS                                  | $NH_2CN$           | C <sub>5</sub> H                  | C <sub>6</sub> H                   | HC <sub>6</sub> H                 | C <sub>8</sub> H                      |
|   | NO                          | $NH_2$           | CCCN                                  | H <sub>2</sub> CCO | HC₂ČHO                            | c-CH <sub>2</sub> OCH <sub>2</sub> | CH <sub>3</sub> CO <sub>2</sub> H | 10                                    |
|   | NS                          | H <sub>3</sub> + | HCO <sub>2</sub> +                    | CH <sub>2</sub>    | CH <sub>2</sub> =CH <sub>2</sub>  | CH <sub>2</sub> CHOH <sub>2</sub>  | H <sub>2</sub> Č <sub>3</sub> HČN | 10<br>CH GOCH                         |
|   | HCI                         | NNO              | CCCH                                  | $c-C_3\tilde{H}_2$ | H <sub>2</sub> CCCC               |                                    | CH₂CHCOH                          | CH₃COCH₃                              |
|   | NaCl                        | HCO              | e-CCCH                                | CH <sub>2</sub> CN | HC <sub>3</sub> NH•               |                                    |                                   | CH <sub>3</sub> (C≡C) <sub>2</sub> CN |
|   | AICI                        | OCS              | CCCS                                  | SiC <sub>4</sub>   | $HC_4H$                           |                                    |                                   | HOCH <sub>2</sub> CH <sub>2</sub> OH  |
|   | AlF                         | CCH              | HCCH                                  | H <sub>2</sub> CČC | C <sub>5</sub> S                  |                                    |                                   | $CH_2CH_2CHO$                         |
|   | PN                          | HCS+             | HCNH+                                 | HČCNC              | $C_4H_2$                          |                                    | b i                               |                                       |
|   | SiN                         | c-SiCC<br>CCO    | HCCN<br>H₂CN                          | HNCCC              | HC <sub>4</sub> N                 |                                    | <b>1</b> 120                      | 11                                    |
|   | NH                          | CCS              |                                       | H <sub>3</sub> CO• | c-H <sub>2</sub> C <sub>3</sub> O |                                    | 7                                 |                                       |
|   | SH<br>HF                    | C <sub>3</sub>   | c-SiC <sub>3</sub><br>CH <sub>3</sub> |                    |                                   |                                    | <b>-</b> 100                      | H(C≡C) <sub>4</sub> CN                |
|   | CN                          | MgNC             | CH <sub>2</sub> D+                    |                    | cum                               | ulative 🖊                          | ŀ                                 | CH₃C <sub>6</sub> H                   |
|   | CO                          | NaCN             | AINC                                  |                    |                                   | otal                               | <b>-</b> 80                       | 12                                    |
|   | CS                          | CH <sub>2</sub>  | AINC                                  |                    |                                   | <b>/</b>                           | ŀ                                 | c-C <sub>6</sub> H <sub>6</sub>       |
|   | Č.                          | MgCN             |                                       |                    |                                   |                                    | - 60                              | 6116                                  |
|   | CS<br>C <sub>2</sub><br>SiC | HÖC+             |                                       |                    |                                   | 1                                  | -                                 | <u>13</u>                             |
|   | CP                          | HCN              |                                       |                    | H <sub>2</sub> O                  | 1/                                 | - 40                              | H(C≡C) <sub>5</sub> CN                |
|   | CO+                         | HNC              |                                       | CH                 | NH <sub>3</sub>                   | 9                                  |                                   | 11(0=0)5011                           |
|   | CH+                         | $CO_2$           |                                       | CH+                | OH,                               |                                    | - 20                              |                                       |
|   | CH                          | SiCÑ             |                                       | CN                 |                                   |                                    | -                                 | toto: 135                             |
|   | $N_2$                       | AICN             |                                       | <del></del>        | <del></del>                       |                                    |                                   |                                       |
|   | -                           | SiNC             |                                       | 1940 50            | 60 70                             | 80 90                              | 2000                              |                                       |
|   |                             | KCN              |                                       |                    | year                              |                                    |                                   |                                       |






L.J. Allamandola et, 2003

Nitrili, eteri, alcoli, idrocarburi ciclici, aminoacidi



CO HC<sub>3</sub>N NH<sub>3</sub> HCHO H<sub>2</sub>O HCN

# Le comete: riserve di acqua e molecole organiche



| drocyanic acid etonitrile panenitrille nomehane noethane nopropene dazole idine, Pyrimidine ine, Adenine | Formaldehyde Acetaldehyde Formic acid Acetic Acid Isocyanic acid Methanol imine Oximidazole Oxypyrimidine Xanthine |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                                                          | panenitrille<br>nomehane<br>noethane<br>nopropene<br>dazole<br>idine, Pyrimidine                                   |

Comete: palle di neve sporche di molecole organiche + silicati (IDP)

Le comete potrebbero aver apportato circa 10<sup>20</sup> Kg di materia (tutta H<sub>2</sub>O della Terra)

## Le meteoriti carbonacee condritiche



**Arizona crater** 



**S. Pizzarello**, *Arizona* 

#### Murchison 1969



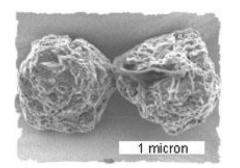



Table 1. Soluble Organic Compounds Murchison Meteorite<sup>9</sup>

| Class of Compounds        | ppm             |
|---------------------------|-----------------|
| aliphatic hydrocarbons    | > 35            |
| aromatic hydrocarbons     | 15 - 28         |
| polar hydrocarbons        | < 120           |
| carboxylic acids          | >300            |
| amino acids               | 60              |
| imino acids <sup>47</sup> | $\mathrm{nd}^b$ |
| hydroxy acids             | 15              |
| dicarboxylic acids        | >30             |
| dicarboximides            | >50             |
| pyridine carboxylic acids | >7              |
| sulfonic acids            | 67              |
| phosphonic acids          | 2               |
| N-heterocycles            | 7               |
| amines                    | 13              |
| amides                    | $\mathrm{nd}^b$ |
| polyols                   | 30              |
|                           |                 |

Più di 70 aminoacidi individuati. Si presentano tutti come racemi a parte 4 in cui si è osservata una preferenza L

## Il batiscafo Alvin e i fondali oceanici



#### **ALVIN**

Woods Hole Oceanographic Institution
J. Corliss

Oregon State University
1977

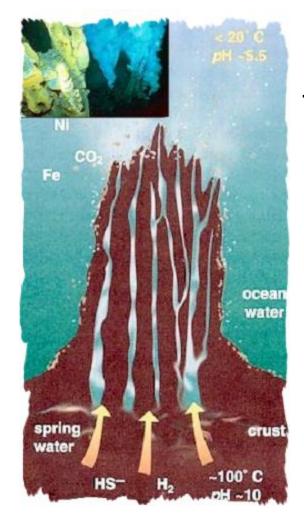


La spedizione del 1977 ha cambiato radicalmente le idee sulla origine della vita in superficie. Infatti a –2800 m non c'è luce, quindi la fotosintesi non è possibile, però...

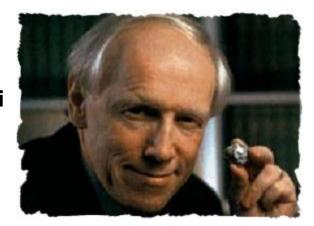
# Ecologia ai "camini neri" sul fondale oceanico








Camini neri: esce  $H_2O$  a 350 °C, ricca di solfuri metallici,  $CaSO_4$ ,  $SiO_2$ ,  $H_2S$  e  $CO_2$  con pH < 3


I vermi tubolari sono pieni di batteri e il colore rosso delle piume indica una quantita di sangue (30% in peso) ricca di emoglobina che cattura  $H_2S$  e  $O_2$  consentendo ai batteri che vivono all'interno dei vermi di trasformarli in nutrienti per l'organismo del verme (simbiosi)

28

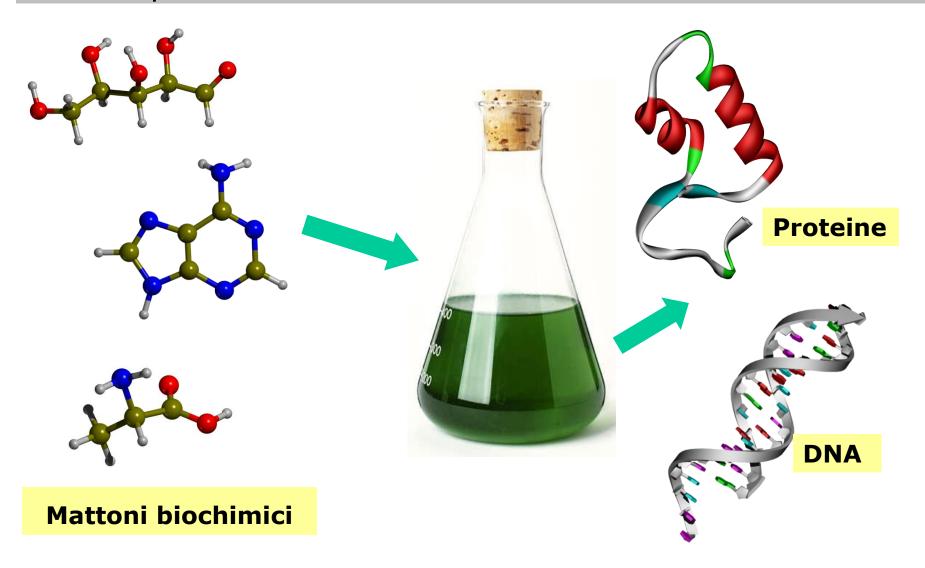
## Le bocche oceaniche idrotermali: un mondo a FeS?



I fumatori neri contribuirono a formare i primi mattoni bio-molecolari nella Terra primitiva



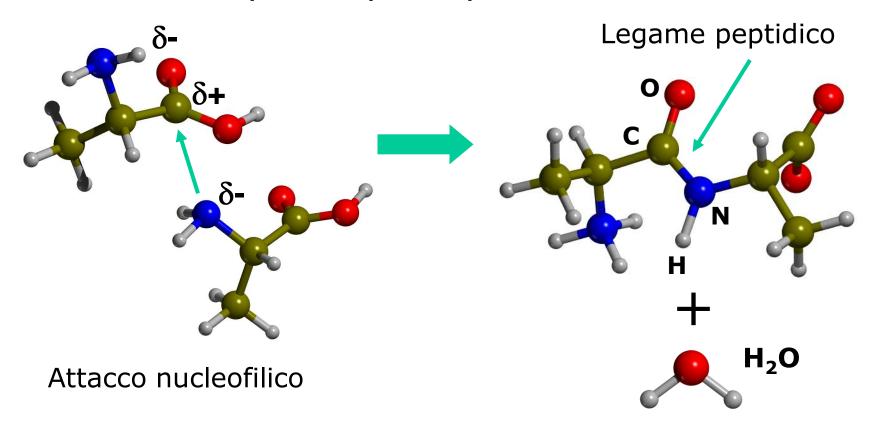
G. Wächtershäuser *Micr. Review* 52:452, **1988** 


Vita era autotrofica ("auto-alimentante") Vita si basava sull'energia dei minerali

$$Fe^{(II)}S^{(-2)} + H_2^{(+1)}S^{(-2)} \rightarrow Fe^{(II)}S_2^{(-1)} + H_2^{(0)} + energy$$
  
 $energy + H_2 + CO_2 \rightarrow HCOOH$ 

 $20~\mu m$ 

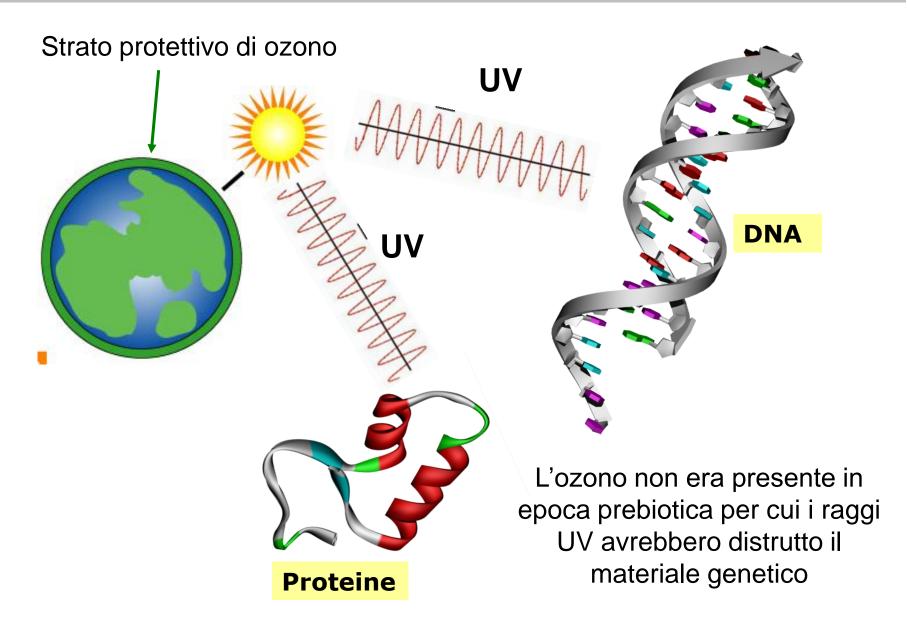
**M. Russell** e **A. Hall** si basano sui solfuri  $(Fe,Ni)_{1+x}S$  come membrane e su  $Fe_3S_4$  e  $FeNi_2S_4$  come catalizzatori (Fe-Ni-S si trova nella ferrodossina e nella CO deidrogenasi)


# E' possibile creare le macromolecole vitali in vitro?



Fino ad ora nessuno è riuscito a farlo in modo efficiente

# Dai mattoni monomerici → biopolimeri

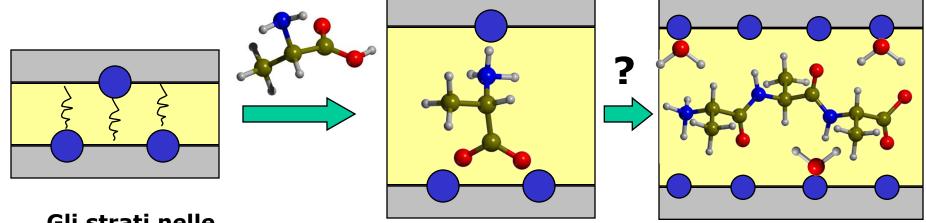

La formazione dei biopolimeri implica sempre una reazione di condensazione:



La reazione è quasi isoergonica in fase gas ed è sfavorita in acqua. La stessa cosa capita per gli altri biopolimeri

# I passi chiave sono ancora da chiarire

## Le macromolecole vitali sono delicate




# Il ruolo protettore/catalitico delle superfici dei minerali



Bernal, J. D. 1949. *The Physical Basis of Life*. Proc. Royal Soc. 62A: 537

Suggerì un possibile ruolo delle superfci interne delle argille come luogo in cui potesse avvenire la cattura, attivazione e condensazione dei biopolimeri



Gli strati nelle argille interagiscono debolmente

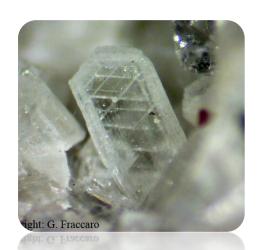
Una argilla può adsorbire i monomeri e concentrarli. Può anche attivare l'attacco nucleofilico tra i monomeri?

# Minerali più rilevanti della crosta terrestre



Talco (SiO<sub>2</sub>, Mg, OH)




Ornoblenda (SiO<sub>2</sub>, Na, Ca, Fe)



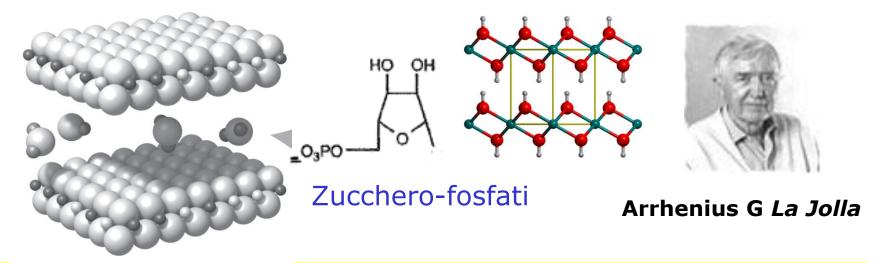
Muscovite (SiO<sub>2</sub>, AI, K)



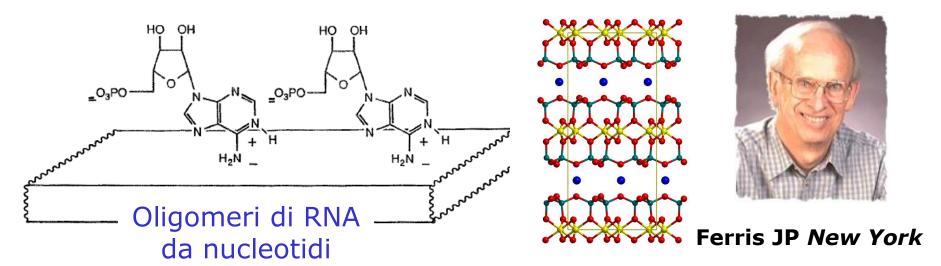
Olivina (SiO<sub>2</sub>, Ca)



Sanidino (SiO<sub>2</sub>, Al, K)

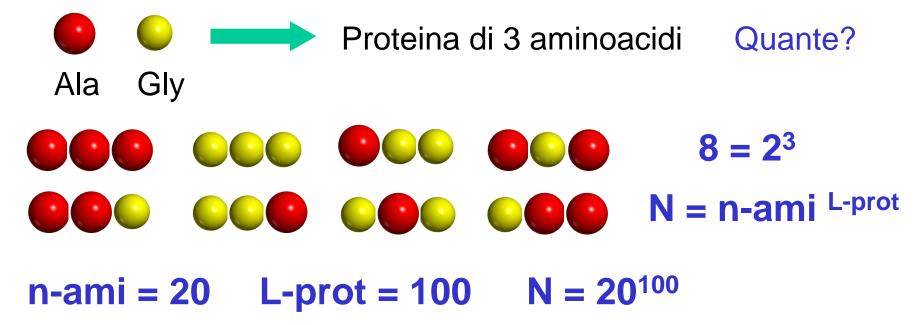



Anortite (SiO<sub>2</sub>, Al, Ca)


36

# I minerali a strati

## Idrotalcite Mg<sub>6</sub>Al<sub>2</sub>(CO<sub>3</sub>)(OH)<sub>16</sub>.4H<sub>2</sub>O




# Montmorillonite $(Na,Ca)_0$ , $3(Al,Mg)_2Si_4O_{10}(OH)_2\cdot n(H_2O)$



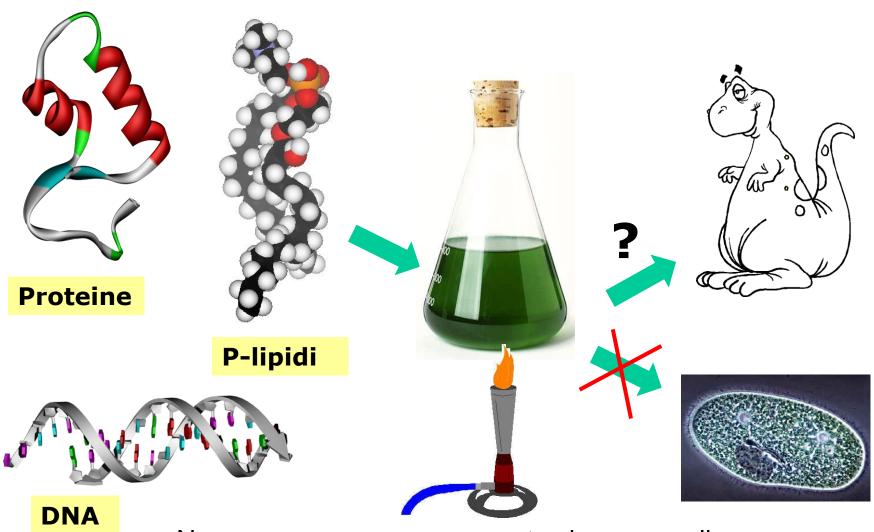
# Riusciamo a fare i biopolimeri della vita?

Solo un **piccolissimo** insieme di potenziali proteine è usato da una cellula per codificare le funzioni vitali



In un organismo vengono codificate circa **10**<sup>5</sup> proteine e il numero di tutte le proteine esistenti è **10**<sup>13</sup>

A livello pre-biotico la selezione è stata immensa


# Quanto è grande 20100?



20<sup>100</sup>/10<sup>13</sup> corrisponde alla rapporto tra il numero di tutti i granelli di sabbia del Sahara e un singolo granello!

Per riprodurre le attuali proteine dobbiamo trovare un sistema che sia capace di selezionare chimicamente un singolo granello nell'intero deserto!

# Possiamo creare la vita partendo dalle macromolecole?



Nessuno conosce come questo si possa realizzare Nemmeno per una singola cellula

# Il gioco della vita

| Vivente | Non vivente |
|---------|-------------|
| Mosca   | Radio       |
| Albero  | Auto        |
| Mulo    | Robot       |
| Bambino | Cristallo   |
| Fungo   | Luna        |
| Amoeba  | Computer    |
| Corallo | Carta       |

Domanda: Cosa discrimina il vivente dal non-vivente?

Quali sono le qualità presenti in tutti gli organismi viventi (colonna a sinistra) ma non nei non-viventi?

Un sistema è vivo se è capace di servirsi del flusso esterno di materia/energia per i suoi processi interni di auto-mantenimento e produzione dei suoi propri componenti

# Sommario e prospettive

Il fatto di essere "polvere di stelle" ci farà apprezzare ancora di più le notti stellate






I cosmologi e i fisici teorici si sono spinti fino a 10<sup>-43</sup> s dal Big Bang per comprendere il cosmo

Riusciranno i chimici a spingersi (più modestamente) fino a 500 Ma dalla nascita della Terra per comprendere l'evoluzione chimica prebiotica?



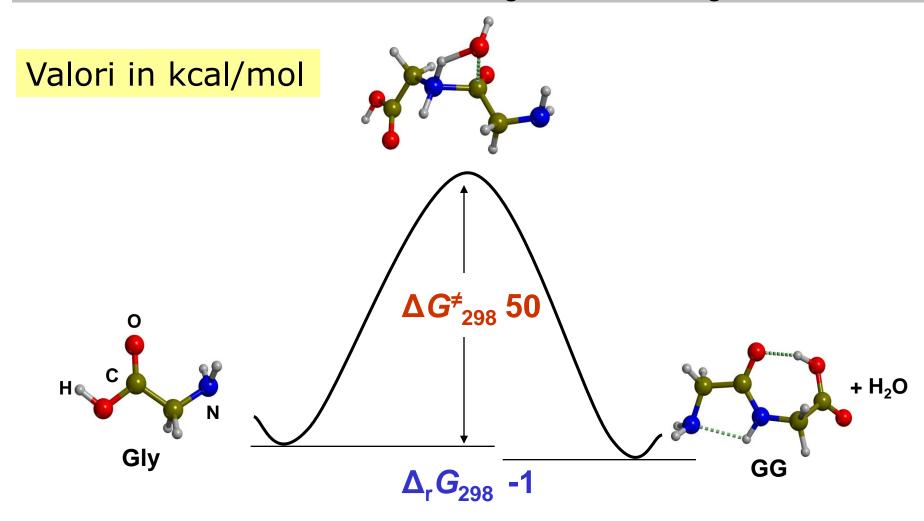


Quanto dovremo aspettare per sintetizzare una cellula basata su un genoma minimale?

# Esperimenti veri e "finti"

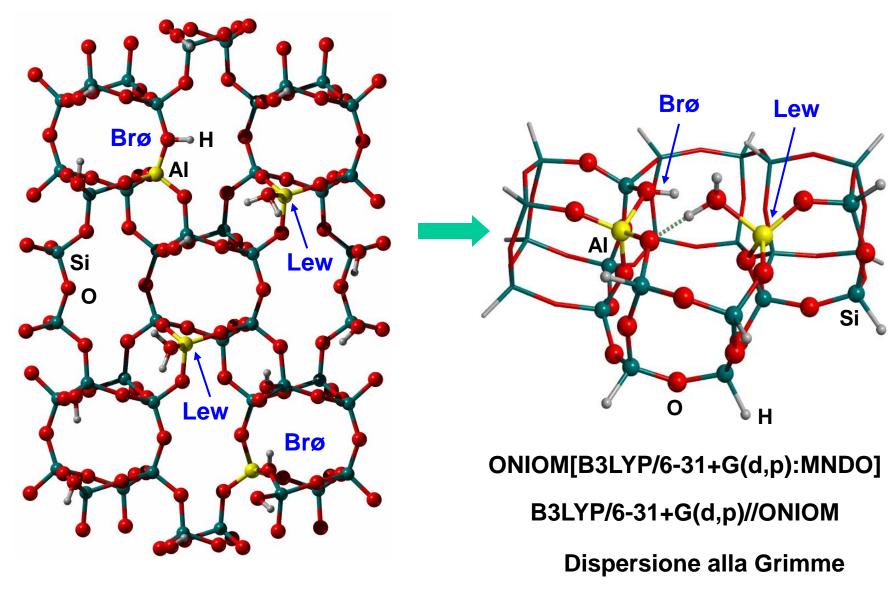
## Esperimenti "reali"




#### Esperimenti "virtuali"

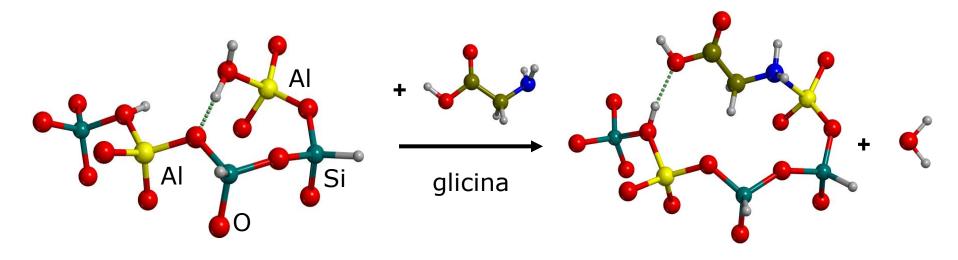


 $H\Psi = E\Psi$ 


Il mondo molecolare viene simulato nel computer secondo le leggi della meccanica quantistica

# La formazione della di-glicina in fase gas

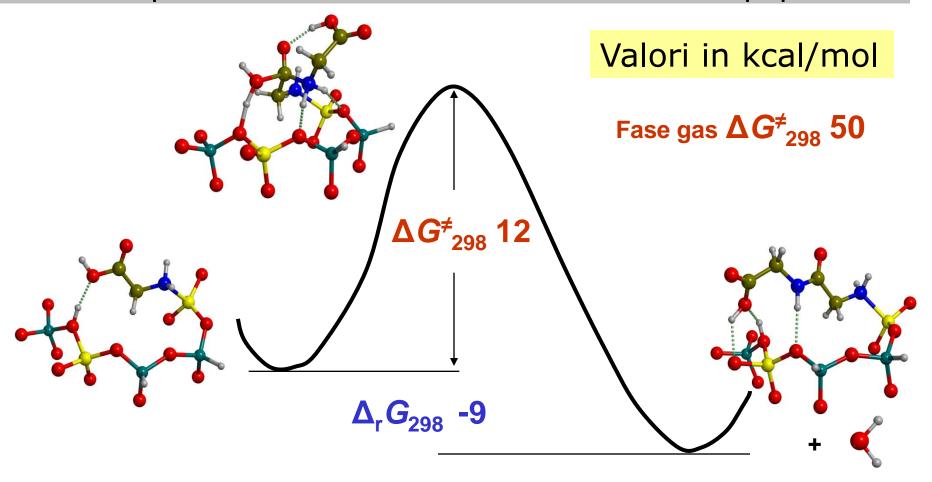



Può una superficie minerale accelerare la reazione e stabilizzare il prodotto?

# Feldspati: la superficie della sanidina (K→H)



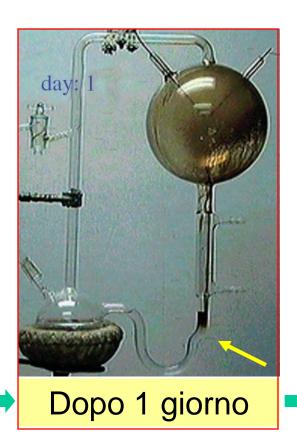
# Spostamento dell'acqua coordinata


# Valori in kcal/mol

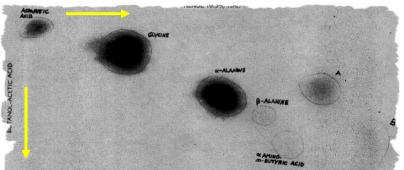


La reazione di spostamento dell'acqua è molto favorita:  $\Delta_r G_{298} = -9$ . Questo assicura che la superficie di feldspato catturi e concentri la glicina del "brodo primordiale" molto diluito.

La glicina così agganciata alla superficie sarà anche attivata rispetto alla formazione del legame peptidico con un'altra molecola di glicina?


## Il feldspato accelera la reazione e stabilizza il di-peptide




Il feldspato velocizza la reazione di 27 ordini di grandezza! La superficie stabilizza la diglicina e inibisce la reazione di idrolisi che ha una barriera cinetica di 21 kcal/mol.

# Risultati dell'esperimento di Miller









Glicina,  $\alpha$ -alanina,  $\beta$ -alanina, acido aspartico e acido  $\alpha$ -amino-n-butirrico

