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O U T L I N E

    INTRODUCTION 

   We provide here a link between the formal theory 
of decision making and the analysis of the decision 
process as developed in neuroscience, with the final 
purpose of showing how this joint analysis can pro-
vide explanation of important elements of economic 
behavior. 

  The methodological standpoint we present is that 
experimental economics, including neuroeconom-
ics, establishes relationships among variables, some 
inferred from observed behavior. In particular, a fun-
damental component of the neuroeconomics project 
is to establish connections between variables derived 
from observed behavior and psycho-physiological 
quantities. For example, the derived variables can be 
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utility, or parameters like risk aversion. If a researcher 
claims that the relationship between utility or value 
and a psycho-physiological quantity (like firing rate 
of a neuron) is linear, then one has to be sure that the 
derived variable is uniquely defined, up to linear trans-
formations. If it is not, the statement is meaningless. 

   We first review the basic concepts and results in 
decision theory, focusing in particular on the issue of 
cardinal and ordinal utility, remembering that within 
the von Neumann-Morgenstern framework the utility 
function on lotteries (the only observable object) is 
only defined up to monotonic transformations. 

   We then show how, under well-specified assump-
tions, it is possible to identify a unique ordinal object, 
and how this is based on stochastic choice models. 
These are, however-static models, so they do not give 
an account of how the choice is reached. We show that 
the static models have a dynamic formulation, which 
extends the static one. 

   Once the main features of the decision process 
have been established, we can show how they explain 
important features of the choice – even some that 
had been ignored so far. For example, we show how 
risk aversion, impatience, and cognitive abilities are 
related.  

    AXIOMATIC DECISION THEORY 

   In economic analysis, decision theory is developed 
with a purely axiomatic method. The theory proceeds 
by first defining a set of choices that a subject (the 
decision maker,  DM) faces. A choice is a finite set of 
options that are offered to the DM; a decision is the 
selection of one of these options. The observed data 
are pairs of choices offered and decisions taken: it is 
possible to collect these data experimentally asking 
a real  DM  to pick one out of two options, under the 
condition that the object selected is actually delivered 
to her. 

   The method and the main results of the theory are 
best illustrated in a simple and concrete example of 
choice environment, choice under risk. In this environ-
ment, the options are lotteries. A common lottery 
ticket provides an example of the abstract concept of 
lottery: a winning number is drawn at random, and 
with such a ticket, a person is entitled to a payment 
if the winning number is the one she has, and she 
receives no payment otherwise. In general, a lottery is 
a contract specifying a set of outcomes (the payments 
made to the subject in our example) and a probability 
for each of these outcomes. The probability is specified 
in advance and known to the subject, so in this model 

there is only objective uncertainty, as opposed to the 
subjective uncertainty analyzed in  Savage (1954)  and 
 Anscombe and Aumann (1963) . 

  A lottery with two outcomes can be formally 
described with a vector ( x , p , y , 1      �       p ), to be inter-
preted as: this lottery gives the outcome x with prob-
ability p , and the outcome  y  with probability 1      �       p . 
For example, the lottery ($10, 1/2, $0, 1/2) where out-
comes are monetary payments gives a 50-50 chance of 
a payment of $10, and nothing otherwise. Lotteries do 
not need to be a monetary amount, but for simplicity 
of exposition we confine ourselves to this case. 

    The Method of Revealed Preferences 

   We can observe the decisions made by our sub-
ject, while we do not observe her preferences directly. 
However, we may interpret her choices as a  “ revela-
tion ”  that she makes of her preferences. Suppose that 
when she is presented with a choice between lottery  L1
and L2  she chooses  L1 : we may say that she reveals she 
prefers  L1  to  L2 . Within economic analysis, it is in this 
sense, and in this sense only, that we can say that the 
 DM  prefers something. The two descriptions of her 
behavior, one with the language of decisions and the 
other with that of preferences, are, by the definition 
we adopt, perfectly equivalent. Since the language of 
preferences seems more intuitive, it is the one used 
typically by decision theory, and is the one used here. 
But how do we describe the behavior, or preferences, 
of our subject?  

    Axioms 

   Even with simple lotteries with two monetary out-
comes, by varying the amounts and the probabilities 
we can obtain an infinite set of possible lotteries, and 
by taking all the possible pairs of these lotteries we 
can obtain infinitely many choices. To describe the 
behavior of a subject completely, we should in prin-
ciple list the infinite set of decisions she makes. To be 
manageable, a theory needs to consider instead sub-
jects whose decisions can be described by a short list 
of simple principles, or axioms. 

   The first axiom requires that the preferences are 
complete: for every choice between the two lotter-
ies L1  and  L2 , either  L1  is preferred to  L2 , or  L2  is pre-
ferred to  L1 . The occurrence of both possibilities is 
not excluded: in this case, the subject is indifferent 
between the two lotteries. When the subject prefers 
L1  to  L2 , but does not prefer  L2  to  L1 , then we say that 
she strictly prefers  L1  to  L2 . The second axiom requires 
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the preferences to be transitive: if the  DM  prefers  L1
to L2  and  L2  to  L3 , then she prefers  L1  to  L3 . We define 
the preference order  �  by writing  L1 � L2  when deci-
sion maker prefers  L1  to  L2  and we write  L1   �   L2  when 
decision maker strictly prefers L1  to L2 . Formally:

    Axiom 1 (Completeness and transitivity) 
    For all lotteries L 1 ,  L2   and L3

    1.      Either L 1    �   L2   or L2 �   L1
    2.      If L  1 �   L  2   and L  2 �   L3   then L 1 �   L3 .      

  The next two axioms are also simple, but more of 
a technical nature. Suppose we have two lotteries, 
L1       �      ( x , p , y , 1      �       p)  and  L2       �      ( z , q , w , 1      �       q ). Take any 
number r  between 0 and 1. Imagine the following con-
tract. We will run a random device, with two outcomes, 
Black  and  White,  the first with probability  r . If  Black  is 
drawn, then you will get the outcome of the lottery L1 ; 
if White  is drawn you will get the outcome of the lot-
tery L2 . This new contract is a compound lottery. If you 
do not care about how you get the amounts of money, 
then this is the lottery with four outcomes described as 
(x ,  rp ,  y ,  r (1      �       p ),  z , (1      �       r)q ,  w , (1      �       r )(1      �       q )). We write 
this new lottery as rL1       �      (1      �       r ) L2 . 

   The next axiom requires that if you strictly prefer 
L1  to  L2 , then for some number  r , you strictly prefer 
rL1       �      (1      �       r ) L2  to  L2 . This seems reasonable: when  r  is 
close to 1 the composite lottery is very close to L 1 , so 
you should strictly prefer it to  L2  just like you strictly 
prefer  L1 .

    Axiom 2 (Archimedean continuity) 
    If L  1�    L  2   then for some number r ∈ (0,1),

rL r L L1 2 21� �( ) .�

  Finally, suppose that you strictly prefer  L1  to  L2 . Then 
for any lottery L3 , you also strictly prefer  rL1       �      (1      �       r)L3
to rL2       �      (1      �       r)L3 . Again, this seems reasonable. When, 
in the description we gave above, White  is drawn, then 
in both cases you get L3 ; when  Black  is drawn, in the 
first case you get L1  and in the second  L2 . Overall, you 
should prefer the first lottery  rL1       �      (1      �       r ) L3 .

    Axiom 3 (Independence) 
    If L1� L2   then for any number r ∈ (0,1)  and any lottery 

L3 , 

rL r L rL r L1 3 2 31 1� � � �( ) ( ) .�

    Representation of Preferences 

  A fundamental result in decision theory (due to 
von Neumann and Morgenstern, (vNM), 1947) is that 
subjects having preferences that satisfy these axioms 

(completeness, transitivity, Archimedean continuity 
and independence) behave as if they had a simple 
numerical representation of their preferences – that 
is, a function that associates with a lottery a single 
number, called the utility of the lottery, that we can 
write as U ( L ). This function is called a representation of 
the preferences if whenever  L1  is preferred to  L2 , then 
the utility of L1  is larger than the utility of  L2 , that is 
U ( L1 )      �       U ( L2 ). (Note that here we use � not � because 
U ( L1 ) is a numerical property not a preference.)

  The  vNM  theorem also states that the preference 
order satisfies the axioms above if, and only if, the 
numerical representation has a very simple form, equal 
to the expectation of the utility of each outcome, accord-
ing to some function u  of outcomes. For example, the 
expected utility of the lottery L       �      ( x ,  p ,  y , 1      �       p ) is: 

U L pu x p u y( ) ( ) ( ) ( )� � �1 (4.1)

    Cardinal and Ordinal Utilities 

  For neuroeconomics, and any research program that 
tries to determine how decisions are implemented, 
the utility function is the most interesting object. This 
function ties observed behavior with a simple one-
dimensional quantity, the utility of the option, and 
predicts that the decision between two options is 
taken by selecting the option with the highest utility. 
However, if we are interested in determining the neu-
ral correspondents of the objects we have introduced, 
we must first know whether these objects are unique. 
For example, we may formulate the hypothesis that 
the decision is taken depending on some statistics of 
the firing rate of a group of neurons associated with 
each of the options. We may also consider that this 
firing rate is proportional to the utility we determine 
from observed choice behavior. Then we need to know 
whether this utility is uniquely determined. This intro-
duces us to a fundamental distinction in decision the-
ory, between cardinal and ordinal representation. 

  An ordinal representation of a preference is any util-
ity function such that U ( L1 )      �       U ( L2 ) if, and only if,  L1
is strictly preferred to  L2 . There are clearly many such 
functions. For example, if M  is any strictly increasing 
function, then also M ( U ( L1 ))      �       M ( U ( L2 )) if, and only 
if, L1  is strictly preferred to  L2 . So we say that an ordi-
nal representation is only unique up to increasing (or 
monotonic) transformation, like the one we have used 
from  U  to  M ( U ). Consider now the function  u  is equa-
tion (4.1), and take two numbers a       �      0 and  b . Replace 
the u function in (4.1) with the new function v  defined 
for any value z  by  v ( z )      �       au ( z )      �       b . If we replace the  u
in equation (4.1) we obtain a new function on lotteries 

AXIOMATIC DECISION THEORY
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which also represents preferences, and has the form of 
expected utility. Since these transformations leave the 
observed choices and preferences unchanged, the  u  in 
(4.1) is not unique. 

   However, these are the only transformations we 
can apply. A second remarkable part of the  v NM theo-
rem is that if two functions  u  and  v  represent the pref-
erences of a subject as expected utility (that is, as in 
(4.1)), then it must be that v ( z )      �       au ( z )      �       b  for some 
positive number a  and some number  b . In this case the 
two functions are said to be linear transformations of 
each other, and representations like these are called 
cardinal representations. A different but equivalent 
way of saying this is that if we consider functions on 
a range of monetary prizes between a minimum of 0, 
say, and a maximum value  M , and we agree to nor-
malize the utility function u  to  u (0)      �      0 and  u ( M )      �      1, 
then there is a unique such function that, once substi-
tuted in equation (4.1), represents the preferences of 
the DM . 

   However, the observed decision between two 
choices is determined by the function U , and this is 
only unique up to monotonic  (not necessarily linear) 
transformations. So even if we agree to normalize 
U (0)      �      0 and  U ( M )      �      1, there are still infinitely many 
such U s. If we are looking for a neural basis of choice, 
then the only sensible statements that involve the func-
tion U  are those that remain true if we take monot-
onic transformations of that function. For example, 
statements like  “ the firing rate is a linear transform of 
the U  ”  are meaningless. 

   Can we do better than this? We can, if we agree 
to extend the set of observed data to include errors 
and time in the decision process. This will take us 
to the next topic of stochastic choices, and one step 
closer to the models of decision currently applied in 
neuroscience. 

    STATIC STOCHASTIC CHOICE 

   To illustrate and motivate this new point of view, 
we begin with a finding discovered in the 1940s by 
an Iowa researcher, D. Cartwright (       Cartwright, 1941a, 
1941b ;  Cartwright and Festinger, 1943 ). He asked 
subjects to pick one of two alternatives. By changing 
the parameter appropriately, the experimenter could 
make the choice more or less difficult – for example, 
setting the width of two angles closer would make 
the task of choosing the wider angle between the two 
a more difficult task. Also, by asking the subject to 
make the same choice repeatedly, at some distance in 
time, he could test the frequency of the choice of one 

or the other of the alternatives in different decision 
problems. He could now construct what we can call 
the empirical random choice: for every set of options, 
the frequency of choice of each option out of that set. 

  He also measured the response time for each choice 
and then plotted the average response time for each 
decision problem against the minimum frequency 
of any of the two choices in that same problem. The 
key finding was that the longest response time was 
observed when the minimum frequency was approach-
ing 50%; the problems in which the subject was more 
likely to select, in different trials, both options were 
also those in which she was taking more time to 
decide. A related result is the  “ symbolic distance ”  
effect, first stated in  Moyer and Landauer (1967) .

   The finding of Cartwright suggests a model of deci-
sion where two opposing forces push in the direction 
of each of the options. When the difference between 
these two forces is large, the decision is frequently 
in favor of the favored option, and the decision is 
taken quickly. When they are the same, the frequency 
of choice of the two options becomes closer, and the 
response time becomes longer. 

   For our purposes of outlining a theory of the deci-
sion process when the decision is among economic 
choices, it is important to note that for economic 
choices the same result holds. Suppose we determine 
the utility of a subject from the observed choices, that 
is, the quantity U ( L ) for every lottery  L.  We can now 
measure the distance between the utility of any two 
lotteries in a choice, and conjecture that the analogue 
of the Cartwright results holds in this situation: the 
closer the two options in utility, the longer the time 
to decide, and the higher the minimum probability of 
choosing any of the two. This conjecture has been con-
firmed in several studies. There is one problem, how-
ever: what is the distance between the utilities? If the 
utility is unique up to monotonic affine transforma-
tions, then the distance is well defined up to re-scaling 
by a single number. But we have just seen that the  U
in (4.1) is not unique up to monotonic affine transfor-
mations, thus even after normalization we have infi-
nitely many such functions. So how can we measure 
in a meaningful way the distance in utility between 
two options? The key to a solution is in the inconsist-
ency of choice that we have just reported. 

    Economic Theories of Static Stochastic Choice 

   The experimental evidence reviewed in the pre-
vious section suggests that when repeatedly faced 
with a choice between the same two options, the 
subject may not always choose the same option in 
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each instance. In contrast, the utility theory we have 
reviewed so far predicts that if the utility of one of 
the two is larger, that should always be the chosen 
one. The key idea of the stochastic theory of choice is 
that the relative frequency of the choice of one option 
over the other gives a better measure of the utility of 
the two options. 

   There are two classes of models of stochastic choice 
in economic theory. Both address the following prob-
lem. Suppose that a DM  is offered, in every period, 
the choice of a set of lotteries, a menu. We observe 
her choices over many periods. For a given menu, the 
choices may be different in different periods, but we 
can associate for every menu the frequency of choices 
over that menu – that is, a probability distribution 
over the set. Both classes of models want to determine 
the underlying preference structure that produces this 
observed frequency. 

  Let us state formally the problem that we have just 
described. For every nonempty set Y,  let P    (Y ) be the set 
of all finite subsets of Y , and  Δ ( Y ) be the set of all prob-
ability measures over  Y.  Let  X  be a set of options: for 
example, the set of lotteries that we have considered 
so far. A  random choice rule  ( RCR )  σ  is a function from 
P(X ) to  Δ ( X ), mapping an element  D   ∈      P(X ) to  σD , 
such that for every such D ,  σD ( D )      �      1. The value  σ D ( x ) 
is the observed frequency of the choice of  x  out of  D.

    Random Utility Models 

   In random utility models (see  McFadden and 
Richter, 1991 , for an early axiomatic analysis, and 
Gul and Pesendorfer, 2003, for a very recent develop-
ment) the subject has a set of different potential utility 
functions (almost different selves), and only one of 
them is drawn every time she has to make a decision. 
This momentarily dominant utility decides the choice 
for that period. Since utilities are different, the choices 
from the same set of options may be different in 
different times, although in every period the  DM  picks 
the best option. 

   The hypothesis that random choice is produced 
by random utilities imposes restrictions on observed 
behavior. For example, in this class of models choices 
are made from a set of lotteries, called a menu. Since 
each of these utility functions is linear, the choice is 
always in a special subset of the menu (technically, 
its boundary). A representation of the random-choice 
rule in random utility models is a probability distribu-
tion over utilities such that the frequency of the choice 
of x  out of  D ,  σD ( x ) is equal to the probability of the 
set of utilities that have the element x  as a best choice 
out of D.

    Stochastic Choice Models 

   In stochastic choice models, the utility function is 
the same in every period. The DM  does not always 
choose the option with the highest utility, but she is 
more likely to choose an option, the higher its utility 
is compared to that of the other options. The power 
of these models is based on two ideas. The first is the 
decomposition of the decision process in two steps; 
evaluation and choice. The second is that frequency of 
choice gives a measure of the strength of preferences. 
Together, they give a way to identify a cardinal utility. 
Early axiomatic analysis of this problem is in  Davidson
and Marschak (1959)  and in Debreu (1958) . A set of 
axioms that characterize RCR s which have a sto-
chastic choice representation and that separate these 
two ideas is presented in,  Maccheroni  et al.  (2007) . 
We examine both ideas in detail. 

    Utility Function and Approximate Maximization 

  A representation in stochastic choice models has 
two elements. The first is the evaluation, which is 
performed by a utility function that associates a real 
number with each option in the available set. The 
second is an approximate maximization function 
associating to each vector of utilities the probability of 
choosing the corresponding option. 

   The utility function is naturally determined on the 
basis of the random choice rule  σ .  Write  σ ( x , y )      �       σ { x,y } 

(x ) and consider the relation defined by 

x y x y y x�  if and only if σ σ( , ) ( , ).


   As usual, a function  u  on  X  represents the order  �  if 
x � y  if, and only if,  u ( x )      
       u ( y ).

  To define the second element, fix  u  and let  U  be 
the range of this function: U       �       u ( X ). An approximate 
maximum selection is a function p  from   P(U ) to  Δ ( U ), 
associating with set A  a probability  pA  which is con-
centrated on A  (that is,  pA  ( A )      �      1) and is monotonic 
(that is, for every a ,  b   �   A  if  a       
       b  then  pA  ( a )      
       pA  ( b )). 

  A representation of the  RCR σ  in stochastic choice 
models is given by a pair ( u ,  p ) of a utility function  u
on X  representing  �  and an approximate maximiza-
tion function p  such that 

σD u Dx p u x( ) ( ( ))( )� (4.2)

   In  Maccheroni  et al.  (2007)  give a set of axioms that 
characterize RCR  with such a representation. 

  Moreover, a pair ( v ,  q ) represents  σ  if, and only if, 
there exists an increasing function  g  :  u  (X) → R  such that 

v g u q b p g b B v XB g B
� �

� � o and ( ) ( ( )) ( ( ))( )1 1 ∀ ∈ P

  (4.3)     

STATIC STOCHASTIC CHOICE
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   In other words, the function  u  is only determined up 
to monotonic (not just affine) transformations, so it is 
still an ordinal, not a cardinal object. Stochastic choice, 
by itself, does not imply the existence of and does not 
reveal a cardinal utility.  

    Strength of Preferences 

  A measure of the  strength of the preferences  of the 
 DM  indicates, for any  x ,  y ,  z,  and  w , whether she 
prefers  x  to  y  more than she does  z  to  w.  As a special 
case, it also indicates whether she prefers  x  to  y  more 
than she does z  to  z  itself – that is, whether she prefers 
x  to  y,  so strength of preferences contains implicitly 
a preference order. How do we access this measure? 
One way is through verbal statements made by the 
 DM:  she introspectively evaluates the strength and 
communicates it to the experimenter, with words, not 
with choice. 

   Stochastic choice provides us with a second, objec-
tive way of measuring the strength of preferences. The 
value σ  ( x ,  y ) describes how frequently the option  x  is 
chosen instead of y . If we compare the frequency of 
choices out of two other options {z , w  } , and we observe 
that σ ( x , y )      �       σ ( z, w ), then we may say that the  DM
likes x  more than  y  with stronger intensity than she 
likes z  more than she likes  w : we write ( x, y )      
      ( z , w ) 
to indicate this order over pairs. A random choice rule 
as characterized in representation (4.2) is a measure of 
the strength preferences. 

   Representation (4.2) shows clearly that knowing 
the strength of preference does not by itself determine 
the utility function as a cardinal object. We can always 
introduce a monotonic transformation of the  u  func-
tion, provided we undo this transformation with an 
appropriate transformation of the approximate maxi-
mization function p.

   To obtain  u  as a cardinal object, a specific and 
strong condition on the random choice rule is needed. 
The nature of the condition is clear:  u  is a cardinal 
object if the strength of preference only depends on 
the difference in utility, namely if the following differ-
ence representation holds: 

σ σ( , ) ( , )
( ) ( ) ( ) ( ).

x y z w
u x u y u z u w



� 
 �

 if, and only if, (4.4)

    Debreu (1958)  investigates conditions insuring that 
condition (4.4) is satisfied. A necessary condition for 
the existence of a u  as in (4.4) is clearly: 

σ σ σ σ
σ σ

( , ) ( , ) ( , ) ( , )
( , ) ( , )

x y x y y z y z
x z x z


 	 	 
 	 	

 	 	

and
imply  (4.5)

   (see also  Krantz et al. , 1971 ;  Shapley, 1975 ;  Köbberling, 
2006 ).

   Together with an additional technical axiom (solv-
ability), axiom (4.5) is all is needed for the existence of 
a function u  that is a cardinal object: that is, if a func-
tion v  also satisfies (4.4) then  v  is an affine monotonic 
transformation of u;  that is, there are two numbers 
a       �      0 and  b  such that  v       �       au       �       b . 

   This opens the way for a complete stochastic choice 
representation of the random choice rule, with the 
additional condition that the utility u  is cardinal. In a 
complete model of stochastic choice, if we introduce 
the additional axiom (4.5) then the approximate maxi-
mization function p  depends only on the differences, 
that is: 

p r P r sr s{ , } ( ) ( )� � (4.6)

   for some function  P.  The question is now: how is that 
probability  P  implemented?      

    DYNAMIC STOCHASTIC CHOICE 

   In the plan of determining the neural basis of deci-
sion, we have two final steps. First, we have to pro-
duce a model of the decision process that produces a 
stochastic choice as described in the previous section. 
Second, we have to specify and test the neural basis 
implementing this process. Let us begin with the first. 

    The Random Walk Model 

   The model’s original formulation is in  Ratcliff 
(1978) . As the title indicates, the theory was originally 
developed for memory retrieval, where the task is as 
follows. A subject has to decide whether an item that 
is in front of her is the same as one she has seen some-
times in the past, or not. She has the following infor-
mation available. First, she has the visual evidence of 
the object in front of her. This object can be described 
abstractly as a vector of characteristics – the color, the 
smoothness of the surface, the width, the length, and 
so on. The subject also has some memory stored of the 
reference object, which can again be described by a 
vector of the same characteristics as the first one. If the 
description of the object is very detailed, the vector is 
a high-dimensional vector. The subject has to decide 
whether the object in front of her is the same as the 
object stored in memory, so she has a simple binary 
(yes , it is the same object, or  no ) decision to take. 

  In an experimental test, we can measure the time the 
subject takes to decide, her error rate, and how these 
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variables depend on some parameter that we control – 
for example, how different the two objects are. 

  A plausible model of the process is as follows. The 
subject compares, one by one, each coordinate in the 
vector of characteristics of the real and recalled object. 
She may find that, to the best of her recollection, they 
coincide, or they do not. She proceeds to count the 
number of coincidences: an agreement of the features 
is taken as evidence in favor of “ yes, ”  a disagreement 
as evidence of “ no ” . If the vector of evidence is very 
long, the subject may decide to stop before she has 
reviewed all the characteristics, according to a simple 
stopping rule: decide in favor of  “ yes ”  the first time 
the number of agreements minus the number of dis-
agreements is larger than a fixed threshold; decide in 
favor of “ no ”  when a similar lower barrier is reached. 
The general form of a decision process based on this 
idea is the random walk of decision. The model has 
been presented in a discrete or continuous time ver-
sion. In the continuous time formulation, the process 
is typically assumed to be a Brownian motion, or at 
least a time homogeneous stochastic process. 

   The model has several parameters: first, those 
describing the process. For example, if the process is in 
continuous time and is a Brownian motion, the proc-
ess is described by the mean and the variance. The 
second parameters are the barriers. There are at least 
two important observed variables: the probability that 
one of the two decisions is taken, and the time needed 
to reach the decision. The model has sharp predictions 
on the two variables: for example, if the drift in favor 
of one of the two options is stronger, then the prob-
ability of that option being chosen increases. Also, 
when the difference in drift between the two choice is 
small, then the time to take a decision increases. 

    DECISION IN PERCEPTUAL TASKS 

   Intense research regarding the neural founda-
tion of the random walk model of decision has been 
undertaken in the past few years. To illustrate the 
method and the findings, we begin again with a clas-
sical experiment (       Shadlen and Newsome, 1996, 2001 ;
 Schall, 2001 ).

   In the experiment, the subject (for example, a 
rhesus monkey) observes a random movement of 
dots. A fraction of the dots is moving in one of two 
possible directions, left or right, while the others 
move randomly. The monkey has to decide whether 
the fraction of dots moving coherently is moving 
to the left or to the right, being instructed to do this 
after intensive training. If the monkey makes the right 
choice, it is compensated by a squirt of juice. Single 

neuron recording of neurons shows that the process of 
deciding the direction is the outcome of the following 
process: some neurons are associated with the move-
ment to the left, and others to the right. The over-
all firing rate of the “ left ”  and  “ right ”  neurons is, of 
course, roughly proportional to the number of dots 
moving in the two directions. The decision is taken 
when the difference between the cumulative firing in 
favor on one of the two alternatives is larger than a 
critical threshold. 

    Formal Model 

  A key feature of the information process described 
above is that each piece of information enters additively 
into the overall evaluation. This has the following justi-
fication. Suppose that information is about a state that 
is affecting rewards. A state is chosen by the experi-
menter, but is unknown to the subject. Information is 
provided, in every period, in the form of signals drawn 
independently in every period, from a distribution over 
signals that depends on the state. How is the informa-
tion contained in the signal observed in every period 
aggregated? 

   In a simple formal example, suppose that the 
decision maker has to choose between two actions: 
left ( l ) and right ( r ). She receives a payment depend-
ing on the action she chooses and an unobserved state 
of nature  s   ∈   {  L ,  R  } ; this is equal to $1 if, and only if, 
she chooses the correct action  l  if the state is  L.  Her 
utility is a function defined on the set A �   {  l ,  r  }
of actions and set of states S � { L ,  R  }  by  u ( l, L )      �
u ( r, R )      �      1, ( l, R )      �       u ( r, L )      �      0. She has an initial sub-
jective probability  p  that the state is  R,  and can observe 
a noisy signal on the true state of nature, according to 
the probability  Ps ( x ) of observing  x  at  s . 

   The posterior odds ratio of  L versus R  with a prior 
P , after the sequence ( x1 ,  x2 ,  …  ,  xn ) is observed, is 
given by: 
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   so that the log of the odds ratio are simply the sum of 
the log of the odd ratios of the signal 
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    Decision in Economic Choices 

   We suggest that the mental operation that is per-
formed when the subject has to choose between two 

DECISION IN PERCEPTUAL TASKS
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economically valuable options consists of two steps. 
First, the individual has to associate a utility with each 
of the two options. Second, she then has to decide 
which of these two computed quantities is larger. This 
second step is a simple comparison of quantities. The 
first is completely new, and is specific to economic 
analysis. Note two important features of this model: 
first, even if the decision maker assigns (somewhere 
in her brain) a strictly larger utility to one of the two 
options, she still does not choose for sure that option: 
she only has a larger probability of doing so. Second, 
the decision maker has a single  utility or preference 
order over outcomes. The choice outcome is not deter-
ministic, because the process from utility evaluation to 
choice is random. 

   What is the evidence supporting this view? Let us 
begin from the step involving comparison of quanti-
ties. Experiments involving comparison of numbers, 
run with human subjects (see  Sigman and Dehaene, 
2005 ), confirm the basic finding that the response time 
is decreasing with the distance between the two quan-
tities that are being compared. For example, if subjects 
have to decide whether a number is larger or smaller 
than a reference number, then the response time is 
decreasing approximately exponentially with the dis-
tance between the two numbers. So there is experi-
mental evidence that suggests that the operation of 
comparing quantities follows a process that is close 
to that described by the random walk model. The last 
missing element is: do we have evidence that there are 
areas of the brain where neurons fire in proportion to 
the utility of the two options? 

    THE COMPUTATION OF UTILITY 

   In this experiment, a monkey is offered the choice 
between two quantities of different food or juices: for 
example, 3 units of apple, or 1 unit of raisin. 

   By varying the quantities of juice of each type 
offered, the experimenter can reconstruct, from 
 “ revealed preferences, ”  the utility function of the 
monkey. This function can be taken to be, for the time 
being, an artificial construct of the theorist observing 
the behavior. The choices made by the subjects have 
the typical property of random choice: for example, 
between any amount less or equal to 2 units of apple 
and 1 unit of raisin, the monkey always chose the 
raisin. With 3 units of apple and 1 of raisin, the fre-
quency of choice was 50/50 between the two. With 
4 or more units of apple, the monkey always went for 
the apple. This is the revealed-preference evidence. 

  At the same time, experimenters can collect single 
neuron recording from areas that are known to be 

active in evaluation of rewards (for example, area 13 of 
the orbito-frontal cortex). They can then plot the aver-
age firing rate over several trials (on the y -axis) against 
the estimated utility of the option that was eventually 
chosen on the x -axis, thus obtaining a clear, monotonic 
relationship between the two quantities. These results 
are presented in detail in Chapter 29. 

    A Synthesis 

   We have now the necessary elements for an 
attempt to provide a synthesis of the two approaches, 
one based on economic theory and the other on 
neuroscience. 

   Consider a subject who has to choose between 
two lotteries. When considering each of them, she 
can assign to it an estimate of the expected utility of 
each option. This estimate is likely to be noisy. When 
she has to choose between the two lotteries, she can 
simply compare the (possibly noisy) estimate of the 
two utilities: thus the choice between the two lotter-
ies is now determined by the comparison of these two 
values. At this stage, the choice is reduced to the task 
of comparing two numerical values, just as the task 
that the random walk model analyzes. 

   In summary, this model views the decision process 
as the result of two components: the first reduces the 
complex information describing two economic options 
to a numerical value, the utility of each option. The 
second performs the comparison between these two 
quantities, and determines, possibly with an error, the 
larger of the two. The comparison in this second step 
is well described by a random walk of decision. 

    FACTORS AFFECTING THE 
DECISION PROCESS 

   In the standard random walk model, the barrier 
that the process has to hit is fixed. Suppose now that 
the information available to the decision maker in 
two tasks is different, and is of better quality in one of 
them.

   For example, in a risky choice the  DM  has a pre-
cise statement on the probability of the outcomes in 
the lotteries she has to choose from. In the ambiguous 
choice, on the contrary, she has only limited informa-
tion on these probabilities. She must provide an esti-
mate on the likelihood of different outcomes on the 
basis of some reasonable inference. Similarly, in a 
choice of lotteries that are paid at different points in 
time, lotteries paid in the current period are easier 
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to analyze than those paid further in, say, 1 month, 
because the decision maker has to consider which 
different contingencies may occur in the next month, 
and how they might affect the outcome and the utility 
for her of different consequences. Consider now the 
prediction of this model on the response time and 
error rate in the two cases. Intuitively, a harder task 
should take longer. This is what the random walk 
model predicts: if the distance from the initial point 
that the process has to cover is the same, and the proc-
ess is slower when the information is worse, then the 
response time should be longer in the harder process. 
However, we observe the opposite: the response time 
in the ambiguous choice is consistently shorter than in 
the risky choice. 

  A consideration of the extreme case in which the 
signal that is observed is completely non-informative 
reveals what might be the missing step. Suppose that 
indeed the signal provides no information. In this case, 
waiting to observe the signal provides no improve-
ment over the immediate decision. Since waiting 
typically implies a cost (at least an opportunity cost of 
time that could be better used in other ways), the deci-
sion in this case should be immediate, because delay 
only produces a waste of time. So, in the case of the 
worse possible signal, the response time is the short-
est. This conclusion seems to contradict the prediction 
of the random walk, but instead it contradicts only the 
assumption that the barrier the process has to hit is 
fixed. The distance from the initial point at which the 
process stops should instead depend on the quality of 
the signal: everything else being equal, a better signal 
is worth being observed for a longer time. 

   In the next section we make this informal argu-
ment more formal, by showing precisely that when 
the quality of the signal is better, two opposing fac-
tors are active: first, the quality of the signal advises to 
wait and get better information. This counteracts the 
second, direct effect (proceeding with a better signal 
is faster), and may produce what we observe: longer 
response times with the better, more informative 
signal.

    A Simple Example 

   The intuitive content of the model can be appreci-
ated better if we consider first the very simple deci-
sion problem already introduced in the Formal model 
section above. If the decision maker receives no addi-
tional information, the value for her problem is 

v p p p( ) { , }� �max 1

   with the optimal choice of  r  if  p       �      0.5, and  l  otherwise.   

   Suppose now that the decision maker can observe 
instances of an informative signal on the state: the 
function from the true state to a signal space is called, 
using a term of statistical theory, an experiment. She 
can observe the signal produced by the experiment 
for as many periods as she wants, but the final util-
ity will then be discounted by a factor δ . Now, it is no 
longer necessarily optimal to choose immediately on 
the basis of the prior belief; rather, it may be better to 
wait, observe the signal, update the belief, and make 
a better choice. Since the value of the reward is dis-
counted, the decision maker has a genuine problem: 
she has to decide between collecting information, and 
choosing immediately. 

  Assume for the moment that an optimal policy, for 
a given initial belief p , exists. The value of the prob-
lem computed at the optimal policy for any such ini-
tial belief defines the value function for the problem, 
which we denote by V.  This function is obviously 
larger than  v , since the decision maker has the option 
of stopping immediately. It is known that the opti-
mal policy for this decision maker can be described 
as a function of the belief she has regarding the 
state – that is, on the current value of  p . The way in 
which this dependence works is clear. For a belief 
p  at which  V ( p )      �       v ( p ), the optimal policy is to do 
what yields v ( p ); namely, to stop. For the values for 
which V ( p )      �       v ( p ), since stopping would only give 
v ( p ), the decision maker has to continue experiment-
ing. It turns out in this simple example that there is a 
cutoff belief, call it  p *, such that it is optimal to stop if, 
and only if, p       
       p * or (symmetrically)  p       �      1      �       p *. 

  Consider now the effect on the decision to stop 
when the quality of the signal provided to the decision 
maker improves. Introducing a notation used later, we 
denote the experiments P  and  Q , with  P  more informa-
tive than Q . Note that the function  v  does not depend 
on the experiment, but the value function V  and the 
cutoff belief  p * depend on it, and we write, for exam-
ple, V ( P ,  · ) and  p *( P ) to make this dependence explicit. 
When P  replaces  Q , the value function  V  becomes 
larger, because the information is better (this is intui-
tively clear, and is proved formally below). Therefore, 
the set of beliefs at which V  is equal to  v  becomes 
smaller; that is, the critical belief p * becomes larger: 
p *( P )      
       p *( Q ). Note for future reference that this value 
also depends on the other parameters of the problem, 
in particular the discount factor δ , although we do not 
make this dependence explicit in the notation. 

    Quality of the Signal and Response Time 

   What is the effect of this change on the response 
time? An increase in the value of  p * tends, everything 

FACTORS AFFECTING THE DECISION PROCESS
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else being equal, to make the response time longer: 
it takes more observation to reach a cutoff which is 
farther from the initial belief. Since an improvement 
of the signal increases  p *, this direct effect would by 
itself produce a longer response time. However, a bet-
ter signal also reduces the time needed to reach a fixed 
cutoff belief, since the information is more effective. 

   The net effect is studied below for a more general 
class of problems, but it is easy to see intuitively what 
it is. Consider first the case in which the signal pro-
vides no information at all. In this case there is no 
point in waiting and experimenting, and therefore the 
optimal policy is to stop immediately. Consider now 
the case in which the experiment provides complete 
information: as soon as the signal is observed, the 
state is known for sure. In this case, the optimal wait-
ing time is at most one period: if the decision maker 
decides to experiment at all, then she will not do it for 
longer than one period, since in that single period she 
gets all the information she needs, and additional sig-
nals are useless. Note that these two conclusions are 
completely independent of the value of the discount, 
since our argument has never considered this value. 

  Consider now the case of an experiment of inter-
mediate quality between the two extremes just consid-
ered: the experiment provides some information, so 
the posterior belief is more accurate, but the informa-
tion is never enough to reach complete certainty. If the 
discount factor becomes closer to 1, then the opportu-
nity cost of gathering additional information becomes 
smaller. The value of a utility at  T  is scaled down by a 
factor δT , which is close enough to 1. So if we keep the 
information fixed, and consider larger and larger val-
ues of δ , we see that the cutoff belief  p * increases. Since 
the experiment is fixed, the effect on the time to reach 
this cutoff now is unambiguous. Note that in fact 
the time to stop is a function of the history of signals 
observed. The probability distribution on this set is 
given by the experiment. Since the cutoff is higher, for 
any history the time to reach this cutoff increases, and 
it is easy to see that we can make it arbitrarily large. 

   We can now conclude that the time to decide (the 
response time that we observe) is a hill-shaped func-
tion of the quality of information. This conclusion 
holds in a more general model, which is presented in 
the Appendix to this chapter. 

    COGNITIVE ABILITIES AND 
PREFERENCES

   We present how the model we have developed so 
far can explain experimental as well as real-life choice 

behavior of a large group of subjects, relating the 
choice made in different environments to cognitive 
abilities. Economic theory makes no statement regard-
ing the correlation between characteristics of individ-
ual preferences in different domains. For example, the 
coefficient of risk aversion is considered independent 
of the impatience parameter. Also, no correlation is 
assumed between these preferences and the cognitive 
ability (CA) of the individual. The predictions of the 
theory of choice that we have presented are different. 

   How can cognitive abilities affect preferences? In 
the theory we have developed so far, the utility of an 
option is perceived with a noise. The more complex 
the option is, the larger the noise in the perception. For 
example, evaluating the utility of a monetary amount 
paid for sure is easy, and no one has any doubts when 
choosing between $10 and $15. Instead, evaluating 
a lottery giving on average $10 is harder, and it is 
harder still to compare the choice between two lotter-
ies. Similarly, the utility of $15 to be paid on 10 days is 
not as sharply perceived as the same payment imme-
diately: we have to consider several different possible 
intervening factors, such as the impossibility of get-
ting or receiving the payment, other payments that 
can be received in the same interval, and so on. 

   Different degrees of CA make the perception of an 
option more or less sharp. Consider now the choice 
between a certain amount and a lottery. While the 
utility of the first is perceived with precision by every 
individual, the noise around the second one increases 
for individuals with a lower CA, and so that option 
is less likely to be chosen by those individuals: sub-
jects with a lower CA make more risk-averse choices. 
Similarly, in the choice between a payment now and 
one in the future, they perceive the second more nois-
ily than the first, and so they are less likely to choose 
it, and they make more impatient choices. The theory 
predicts that impatience and risk aversion are corre-
lated, and these in turn are correlated with cognitive 
abilities.

     Test of the Theory 

   We examined whether and how attitudes to risk, 
ambiguity, and inter-temporal choices are related 
in a large (N      �      1066) sample of drivers in an impor-
tant national (USA) company (see Burks et al., 2007 ).
Thanks to an agreement with the company, we ran 
extensive (4 hours) laboratory experimental testing 
with the participating subjects on a battery of tasks 
involving choice under risk, ambiguity, choice over 
time delayed payments, as well as a variety of psycho-
logical measurements and cognitive tasks (see  Burks
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et al. , 1943  for a detailed description of the experi-
ment). Similar results, which confirm the robustness of 
ours, can be found in Benjamin et al.  (2007) ; Dohman 
et al.  (2007). From a different perspective, the issue 
of the connection between cognitive abilities (specifi-
cally numeracy) and decision making can be found in 
 Peters  et al.  (2006) . 

   We had three separate measures of CAs: a measure 
of the IQ (Raven’s matrices), a measure of numeri-
cal ability (Numeracy) on tests provided by the  ETS
(Educational Testing Service), and the score on a sim-
ple game played against the computer (called Hit 15 , 
because the game is a race between two players to 
reach position 15 on a gameboard) which measures 
the planning ability of the individual. 

   In the choice under uncertainty, subjects were 
asked to choose between a fixed lottery and a vary-
ing certain amount. The lottery was either risky (with 
known, equal probability of the two outcomes) or 
ambiguous (unknown probability of two colors, and 
the subject was free to pick the winning color). In 
choices of different profiles of payments, subjects had 
to choose between two different payments at two dif-
ferent points in time, a smaller payment being paid 
sooner. 

  A first clear effect due to CA was the number of 
errors the subject made, if we define error (as before) 
as the number of switches between certain amount 
and lottery above two. We found that inconsistency 
increases with our measures of CA, in particular IQ 
and Hit 15  score. 

   The effect of CA on preferences was as predicted: 
the patience and the index of cognitive ability are pos-
itively correlated. Also, risk aversion and the index of 
cognitive ability are negatively correlated. As a result, 
there is a negative correlation between risk aversion 
and impatience. 

   The effect of the difference in cognitive ability 
extends to behavior in strategic environments. In 
our experiment, subjects played a discrete version of 
the trust game: both players were endowed with $5; 
the first mover could transfer either $0 or the entire 
amount, and the second player could return any 
amount between $0 and $5. Both amounts were dou-
bled by the experimenter. Before the choice, subjects 
reported their belief on the average transfer of the par-
ticipants in the experiment both as first and as second 
movers.

   We found that a higher IQ score makes a subject a 
better predictor of the choice of the others as first mov-
ers: while the average underestimates the fraction of 
subjects making a $5 transfer, subjects with higher IQ 
are closer to the true value. Similarly, they are closer 
to the true value of the transfers of second movers. 

The behavior is also different. As second movers, 
subjects with higher IQ make higher transfers when 
they have received $5, and smaller transfers in the 
opposite case. 

   The behavior as first movers is more subtle to ana-
lyze, since beliefs also enter into the choice: since 
subjects with higher IQ believe that a larger fraction 
of second movers will return money, they might be 
influenced by this very fact. In addition, the difference 
in risk aversion might affect choices. Once we control 
for these factors, however, subjects with higher IQ are 
more likely to make the $5 transfer. 

   We also followed the performance on the workplace 
in the months following the initial collection of experi-
mental data; in particular, the length of time the sub-
ject remained with the company, and, when relevant, 
the reason for quitting the job. In the training offered 
by the company, quitting before a year can be safely 
considered to be evidence of poor planning: trainees 
leave the company with a large debt (for the train-
ing costs have to be paid back to the company if an 
employee quits before the end of the first year), they 
have earned little, and have acquired no useful experi-
ence or references for their resumé. If we estimate the 
survival rate for different socio-economic variables 
(for example, the married status), then the variables 
have no significant effect on the survival rate, while 
the Hit 15  affects it largely and significantly.    

    APPENDIX: RANDOM WALK WITH 
ENDOGENOUS BARRIERS 

  We denote the unknown parameter (for exam-
ple, the state of nature) as  θ   ∈   Θ . The decision maker 
has an initial belief on the parameter,  μ0   ∈   Δ ( Θ ), and 
has to take an action a   ∈   A . The utility she receives 
depends on the state of nature and the action taken, 
and is described by a function u  :  Θ       �       A → R.  She 
can, before she takes the action, observe a signal  x   ∈   X
with a probability that depends on the state of nature, 
denoted for example by Pθ   ∈   Δ  (X). In classical statisti-
cal terminology, this is an experiment  P   �  ( P  θ ) θ∈Θ. For 
any given prior belief on the set Θ , this experiment 
induces a probability distribution on the set of signals: 

P x d P xμ θμ θ( ) ( ) ( ).�
Θ∫

   The subject can observe independent replications of 
the signal as many times as she likes, stop, and then 
choose an action a     ∈   A . The use of the experiment has 
a fixed cost c  for every period in which it is used. 

   The information she has at time  t   ∈   { 0, 1,  …  }  is 
the history of signals she has observed, an element 

APPENDIX: RANDOM WALK WITH ENDOGENOUS BARRIERS



I. NEOCLASSICAL ECONOMIC APPROACHES TO THE BRAIN

4. NEUROECONOMICS: FORMAL MODELS OF DECISION MAKING AND COGNITIVE NEUROSCIENCE44

(x0 ,  … ,  xt� 1 )  ∈   Xt . The posterior belief at any time 
t  is a random variable dependent on the history 
of signals she has observed, and is denoted by μt . 
Let B ( μ ,  x ) denote the posterior belief of a Bayesian 
decision maker with a prior belief μ  after observing 
a signal x.  We write  B ( μ ,  x ,  P ) if we want to empha-
size the dependence of the updating function on the 
experiment P.

   The decision maker can make two separate choices 
in each period: first, whether to stop observing the sig-
nal, and second, if she decides to stop, which element 
of A  to select. The action she chooses at the time in 
which she stops is optimal for her belief at that time. 
If her posterior is ν , her value at that time is equal to 
v ( ν ), the expected value conditional on the choice of 
the optimal action, namely: 

v E u a
a A

( ) ( , )ν ν� max
∈

⋅ (4.7)

   Conditional on stopping, the action in  A  is determined 
by the maximization problem we have just defined, 
and the value of stopping is given by v . We can there-
fore focus on the choice of when to stop. 

  A policy  π  is a sequence of mappings ( π0 ,  … ,  πt ,  … ), 
where each  πt  maps the history of observations at 
time t , ( x0 ,  … ,  xt� 1 ) into  { 0,1 } , where 1 corresponds to 
Stop.  The first component  π0  is defined on the empty 
history. 

   The initial belief  μ  and the policy  π  define a prob-
ability distribution over the set of infinite histories 
X� , endowed with the measurable structure induced 
by the signal. We denote by  Επ,μ  the corresponding 
expectation. Also there is a stopping time  T  (a random 
variable) determined by the policy π , defined by 

T x x
t

t t� min{ ( , , ) }π 0 1 1… � �

   The expected value at time zero with the optimal 
policy depends on the signal the subject has available, 
and is given by 
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Normally distributed signals  An important exam-
ple is the class of normally distributed experiments. 
Let Θ  be a subset of the real line, indicating the expec-
tation of a random variable. 

  An experiment  P  is defined as the observation of 
the random variable X  distributed as  N ( θ ,  σ2 ) ,  where 
the variance σ2  is known. An experiment  Q , given 
by the observation of the variable Y  distributed as 

N ( θ ,  ρ2 ), is dominated by  P  if, and only if,  ρ       �       σ .  This 
is in turn equivalent to the existence of a normal ran-
dom variable Z  with zero expectation and variance 
equal to ρ2       �       σ2  such that 

Y X Z� � .

    OPTIMAL POLICY 

   The operator  M  on the space of continuous func-
tions on Δ ( Θ ) with the sup norm is defined by 

M P W v c E W BP( , )( ) { ( ), ( ( , ))},μ μ δ μμ� max � � ⋅

   where the function  v  is defined in (4.7). 
   This operator is a contraction on that space, because 

it satisfies the conditions of Blackwell’s theorem. 
Hence the value function V  exists, and is the solution 
of the functional equation: 

V P M P V( , ) ( , )( ), .μ μ μ� for every 

   The value function equation describes implicitly the 
optimal policy, which is a function  Π̂     of the current 
belief. As in our simple example, the policy is to stop 
at those beliefs in which the value function V  is equal 
to the value of stopping immediately,  v.  Formally we 
define the stopping time region  S ( P )  �   Δ ( Θ ) as 

S P v V P( ) { : ( ) ( , )}� μ μ μ�

   The optimal policy is stationary: the function  πt
depends on the history of signals only through the 
summary given by the current belief. This optimal 
policy is described by the function Π̂

ˆ ( ) ( ).Π μ μ� 1 if and only if ∈ S P

    VALUE AND QUALITY OF SIGNALS 

   Consider now two experiments of different quality, 
P  and  Q  say. Let  �  denote the partial order (as defined 
by Blackwell, 1951 ; Targerson, 1991) over experiments. 
We now show that if the experiment is more informa-
tive, then the set of beliefs at which the decision maker 
continues to observe the signal is larger than it is for 
the worse signal.

    Theorem 4 
    1.      The operator M is monotonic in the order �  , that is, 

for every function W : Δ(Θ) →   R, if P �   Q, then M(P, 
W)       
       M(Q, W), and therefore V ( · , P )      
       V ( · , Q )

    2.      The optimal stopping time region S is monotonically 
decreasing, namely if P �   Q then S ( P ) �   S ( Q ).
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   In terms of our main application, decision under risk 
and uncertainty, the conclusion is that with a richer 
information (risk) the barrier where the random walk 
stops is farther than it is with the more poor infor-
mation (ambiguity). As a consequence, the updating 
process may take longer in risk than in ambiguous 
choices.

Quality of signals and response time  We now 
present formally the argument presented informally 
in our analysis of the simple example. Recall first that: 

    1.     An experiment is called totally un-informative, 
denoted by Pu , if    

for all θ θ θ θ
1 2

1 2, ,∈ Θ P Pu u�

    2.     An experiment is called totally informative, 
denoted by Pu , if    

for all θ θ θ θ
1 2

1 2, , ,∈ ⊥Θ P Pu u

    that is the two measures are mutually singular.    

   We now have:

    Lemma 5 
      1.      If the experiment P is totally informative, then at the 

optimal policy the stopping time T       �      1 , (π ,  μ)       �      a.s.;   
    2.      If the experiment P is totally un-informative, then at the 

optimal policy the stopping time T       �       0, (π ,  μ)       �      a.s.;       

  As in the analysis of our simple example, note that the 
two conclusions are independent of the discount fac-
tor δ  and the cost  c . 

   We now turn to the analysis of the response times 
when the experiments have intermediates, namely for 
experiments P  such that  Pi � P � Pu . 

   Define the function 

U u a d
a A

( ) ( , ) ( )μ θ μ θ� max
∈∫Θ

   This is the value at the belief  μ  of a decision maker 
who is going to be completely and freely informed 
about the state before she chooses the action. 
Information is always useful for her (for every belief 
that is different from complete certainty about a state) 
if the value of the optimal choice at μ  is smaller than 
the expected value when complete information will 
be provided:

    Assumption 6 
    Information is always useful, namely 

For every if
then U v

μ μ δ θ
μ μ

θ∈ ∉ ∈Δ Θ Θ( ), { : },
( ) ( ).� (4.8)

    Assumption 7 
    An experiment P is intermediate, that is: 

    1.      For every fi nite number n of independent observations, 
and initial belief in the relative interior of Δ (Θ) ,     

B Pn( , )μ

     is in the relative interior of Δ(Θ).

    2.      As the number of independent observations tends to 
infi nity, the product experiment converges to the totally 
informative experiment. 

    Theorem 8 
    If information is always useful (assumption 9.3) and the 

experiment is intermediate (assumption 9.4), then 

lim
c

T a s
↓ ↑

∞
0 1

0
,

, ( , ) . .
δ

π μ� �

    where  π  is the optimal policy. 
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