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An Introduction to Risk Sensitivity: The Use of Jensen’s Inequality to

Clarify Evolutionary Arguments of Adaptation and Constraint!
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SyNopsis. 1 review the basic rationale for risk-sensitive foraging, and
present a few of the most common expressions of risk-sensitivity theory.
A simple heuristic, the energy-budget rule, and the z-score model are
explained. These functional models of risk sensitivity assume or explicitly
model fitness as a nonlinear function of an animal’s energy state. For such
nonlinear relationships, Jensen’s inequality predicts that the fitness real-
ized by an animal with a more constant energy state may be higher or
lower than the fitness resulting from a variable energy state with the same
mean, depending on the shape of the fitness function. Predictive func-
tional models of behavior, like the energy-budget rule and the z-score
model, depend on specific features of the function relating energy state
to fitness, which may or may not be general features for most organisms.
While behavioral ecologist have studied the functional significance of
animal responses to variation in foraging rewards, psychologists have
long studied the psychological mechanisms by which preferences for vari-
able or constant rewards are expressed. Jensen’s inequality is applied here
too; psychologists propose nonlinearities in the perception and processing
of information. The growing number of different relationships that might
account for risk-sensitive behavior is a potential source of confusion. I
advocate ‘“‘returning to the basics,” i.e., that hypotheses to explain risk-
sensitive behavior should specify precisely the assumed nonlinear rela-

tionships.

INTRODUCTION

Behavioral ecology was already a well-
defined discipline in 1980, when Caraco
(1980) and Real (1980) independently in-
troduced the concept of risk-sensitive for-
aging. Behavioral ecologists were mostly
concerned with developing and testing
functional models of behavior. They con-
structed models of the relative costs and
benefits of the alternative behaviors avail-
able to the animal under study. By assum-
ing the animal behaves so as to maximize
its net benefit, they could derive predictions
from these models. Costs and benefits were
usually calculated in some proximate cur-
rency thought to correlate with evolutionary
fitness (e.g., rate of net energy intake, num-
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ber of matings obtained). By 1980, this ap-
proach had been remarkably successful at
explaining a variety of foraging, reproduc-
tive, and social behaviors, as textbooks
from that time make clear (Krebs and Da-
vies, 1978, 1981). Prior to 1980, functional
models of behavior focused on the average
net benefit of the behavioral options under
study.

The key contribution of risk-sensitive
foraging theory is its consideration of the
variation about average rewards associated
with different strategies. Specifically, con-
sider an animal that has a choice between
two foraging strategies that yield the same
average amount of food, but with different
variances about that average. Should the an-
imal choose the strategy with the lower
variance in the amount of food, or the high-
er variance? Risk-sensitive foraging theory
is a collection of models that consider the
effects of variance about the average re-
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ward. As such, it might more accurately be
named ‘‘variance-sensitivity theory,” but
the current name is well established. The
term ‘‘risk-sensitive’’ is occasionally used
to refer to animals that change their behav-
ior in response the risk of predation (e.g.,
Pierce, 1988), but here I use the term ex-
clusively to refer to sensitivity to variation.

Risk-sensitive behavior has been well
documented in response to variations in the
amount of rewards for particular strategies,
and for variations in the delay to the deliv-
ery of the reward. Animal responses to vari-
ations in delay are often quite different
from their responses to variations in amount
(Hamm and Shettleworth, 1987). Several
papers in this volume consider risk-sensi-
tive behavior in response to delays (Green
and Myerson, 1996; Benson and Stephens,
1996; Kacelnik and Bateson, 1996, all in
this volume). Merely for brevity, I will re-
strict my discussion to variations in amount
of reward.

The theoretical treatments in Caraco
(1980) and Real (1980) were ground-break-
ing; however, it was the experimental re-
sults from that time that drew the attention
of behavioral ecologists to risk sensitivity.
For example, Caraco et al. (1980) conduct-
ed laboratory experiments with wild-caught
birds, demonstrating: a) that the birds were
sensitive to the magnitude of variation in
rewards associated with different foraging
options, and b) that the birds switched their
preference from a high-variation option to
a low-variation option, in accordance with
risk-sensitive foraging theory. That animals
could detect and respond to different levels
of variation was of great interest to behav-
ioral ecologists, and inspired many theoret-
ical and empirical studies of risk-sensitive
behavior (see reviews in Stephens and
Krebs, 1986; McNamara and Houston,
1992; Kacelnik and Bateson, 1996).

Psychological examinations of animal re-
sponses to variation in rewards preceded
this burst of interest in risk sensitivity
among behavioral ecologists. Psychologists
were interested in the mechanisms of per-
ception that influenced animal choices.
However, behavioral ecologists drew more
inspiration from the field of economics than
from psychology in their functional models
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of risk sensitivity (Real and Caraco, 1986;
Bednekoff (1996) briefly reviews the im-
portance of risk sensitivity in economics).
It is therefore interesting that some behav-
ioral ecologists are now trying to synthesize
the mechanistic models of psychology with
the functional models of behavioral ecology
(e.g., Real, 1991, 1996; Kacelnik and Bate-
son, 1996).

This paper is written with two objectives
in mind; to provide a tutorial on risk-sen-
sitivity theory, and to comment on the value
of re-examining the assumptions underlying
explanations of risk-sensitive behavior. I in-
troduce the basic logic and mechanics of
risk sensitivity, first with a simple heuristic,
and then by examining rules of behavior
derived from this logic. Next, I examine the
underlying assumption of these functional
models: a non-linear relationship between
fitness and the energy state of the animal.
Careful attention to this underlying assump-
tion can clarify (or invalidate) evolutionary
arguments. Psychologist also hypothesize
nonlinear relationships in their mechanistic
explanations of risk-sensitive behavior. One
might account for risk-sensitive behavior by
hypothesizing nonlinearity at any one of
several functional or mechanistic relation-
ships linking environmental input with be-
havioral output. I suggest that any clear ex-
planation of risk-sensitive behavior should
specify precisely which relationship(s) are
hypothesized as nonlinear.

MODELS OF RISK-SENSITIVE BEHAVIOR
A simple hueristic

In nature, animals seldom obtain the av-
erage reward associated with a particular
strategy; there is usually variation in the re-
wards. Some strategies may yield more
consistent rewards than others. Consider an
animal that has two foraging strategies
available to it. Each strategy yields the
same mean reward in terms of net energy
intake/foraging bout, but one strategy’s re-
wards vary more than the other (Fig. 1).
Would the animal benefit more by choosing
the strategy with the variable or more con-
stant rewards? The answer depends on the
animal’s requirements. If an animal requires
relatively little to satisfy its requirements
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FiG. 1. A simple heuristic. Strategies A and B each
provide the same mean reward, but the reward for
strategy B is more variable. The vertical line for each
strategy represents the spread of possible rewards for
playing that strategy (e.g., the range of possible re-
wards, or the variance for normally distributed re-
wards, or some other measure of variation). If an an-
imal requires a minimum reward level of R2, it is more
likely to obtain its requirement by playing the more
variable risk-prone strategy.

(before turning its attentions away from for-
aging to mate acquisition, territory defense,
etc.), it is safer for the animal to chose the
more constant strategy, as the average re-
wards of this strategy satisfy the require-
ments of the animal. If the animal chooses
the more variable strategy, it risks not meet-
ing its energetic requirements for that for-
aging bout. If there is no great benefit for
exceeding the required amount of energy (a
possibility considered later), there is no rea-
son for the animal to accept such risks, and
it should be risk-averse: meaning it should
prefer the strategy yielding more constant
rewards.

The situation is different if the animal’s
requirements exceed the average reward of
the two strategies (Fig. 1, R,;). Now, choos-
ing the low-variance strategy minimizes the
chance that the animal will meet its require-
ment for rewards in this foraging bout. The
best option available to the animal is the
variable strategy. This risk-prone behavior
maximizes the probability (however small)
that the animal meets its requirements. This
is the logic of the energy-budget rule intro-
duced by Caraco (1980). According to this
rule, animals expecting to exceed their en-
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ergy requirements should be risk-averse,
and those expecting to fall short should be
risk-prone.

In a striking series of experiments, Car-
aco (Caraco, 1981, 1983; Caraco et al,
1980) taught wild-caught birds to forage for
seeds in covered dishes in a laboratory set-
ting. The birds learned to associate covers
of a particular color with either constant or
variable numbers of seeds in the dish.
When the average number of seeds in each
dish exceeded that required to maintain a
positive energy budget, the birds preferred
the dishes with a constant number of seeds.
When the average number of seeds was be-
low that required for the birds to maintain
a positive energy budget, the birds switched
to a more risk-prone behavior. These ex-
periments have been repeated with a num-
ber of bird and other animal species; the
energy budget rule successfully predicted
foraging behavior in a number of cases (see
review by Kacelnik and Bateson, 1996).

The z-score model

The preceding explanation illustrates the
simplest situation, where the different strat-
egies have the same mean reward. It is then
easy to see which strategy maximizes the
probability of meeting the animal’s require-
ment. In more natural settings, different
strategies are likely to differ in mean re-
wards as well as variation about the mean.
Stephens (1981; Stephens and Charnov,
1982) developed the z-score model to de-
termine which of the available strategies
minimizes the probability of gaining less
than the required reward when both means
and variances differ. Consider an animal
with an energetic requirement of R. Assume
the animal has two foraging options avail-
able to it, each of which provides rewards
according to a normal distribution, each
with its own mean and standard deviation.
In this circumstance, it can be shown that
the option with the highest z-score—the
highest ratio of [(R — mean)/standard de-
viation] is the option that minimizes the
probability of energetic shortfall. The op-
tion with the highest z-score can be deter-
mined graphically (see Fig. 2). When the
strategies differ only in the magnitude of
variation, the results are the same as those
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Fic. 2. The z-score model. Different strategies (A, B,

C) are plotted by their mean reward and the standard
deviation about that mean. Ri denotes the amount of
reward required by the animal. For a given require-
ment, the strategy that minimizes the probability of
gaining less than the requirement can be found by con-
structing lines from the requirement on the vertical
axis to each reward. Assuming a normal distribution
of rewards for each strategy, the strategy with the line
of highest slope is the one with the highest z-score—
the one that minimizes the probability of a shortfall.
The z-score model allows easy comparisons of strate-
gies that vary in both mean reward and standard de-
viation. Here, if the animal requires R2 rewards, strat-
egy C minimizes the probability of a shortfall, even
though its standard deviation is less than B’s.

obtained by the energy-budget rule. Ste-
phens and Krebs (1986) provide an acces-
sible explanation of the details of the
z-score model.

This model has been applied to the prob-
lem of patch departure: determining how
long a forager should continue to exploit a
particular patch before leaving (Stephens
and Krebs, 1986). Here, a foraging strategy
is the amount of time a forager chooses to
continue exploiting a patch before depart-
ing. Foraging in a patch for, say, 90 seconds
may yield rewards (e.g., particular rate of
energy intake) with a mean and a standard
deviation about that mean. An exploitation
time 120 seconds may yield a reward with
a different mean and standard deviation.
Again, if the rewards for staying a partic-
ular length of time in a patch are normally
distributed, the exploitation time with the
highest z-score is the length of time that
minimizes the probability of the forager ob-
taining less than its required reward. This
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approach has been used to generate predic-
tions for patch-exploitation times (patch de-
parture rules) for bumblebees in an exper-
imental foraging arena (Cartar and Abra-
hams, 1996).

The energy-budget rule and the z-score
model share an underlying assumption; they
assume a specific relationship between the
rewards gained by the animal and its fit-
ness. That is, they assume that the animal
experiences a higher fitness for satisfying
its requirement, but no further gains in fit-
ness for exceeding the requirement. In for-
aging terms, they assume that the forager
benefits from meeting its energy budget, but
that additional energy gained does not raise
fitness further. This step function is actually
a more extreme version of the sigmoidal re-
lationship between energy state and fitness
suggested by Caraco (1980) and Real and
Caraco (1986). A nonlinear fitness function
is an essential underlying assumption to
functional explanations for risk-sensitive
behavior in animals. An interesting prop-
erty of nonlinear functions—referred to as
Jensen’s inequality—leads to the predic-
tions of the energy budget rule and the
z-score model.

Jensen’s inequality, functional and
mechanistic relationships

Jensen was a mathematician from the
1700s, and unfortunately, very little is writ-
ten about him beyond the inequality that
bears his name. Jensen’s inequality states
that the average value of a function of a
variable, E[F(x)], need not equal the value
of the function evaluated at the average
variable. One expression of his inequality is
that for any concave-down (increasing, but
decelerating) function,

F(E[x]) = E[F(x)] (D

The opposite is true for a concave-up func-
tion (Feller, 1966).

To appreciate how Jensen’s inequality ap-
plies to risk-sensitive foraging, consider the
hypothetical fitness function in Figure 3.
This concave-down function results if the
benefit experienced by an animal for in-
creasing its energy state becomes smaller at
higher energy states. This relationship
seems reasonable for a wide range of ani-
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Energy State

FiG. 3. Jensen’s inequality. The concave-down curve
represents the relationship between energy state and
fitness. A constant energy state (A) yields a higher
fitness than a variable energy state with the same mean
(B). See text for further explanation.

mals. It is consistent with the intuition that
an animal with low energy reserves will
benefit more from gaining a particular
amount of energy than animal with higher
reserves of energy. In marginal value terms,
this relationship results when the value of
an additional unit of energy declines as the
energy in reserve increases.

Now consider an animal with the follow-
ing choices available to it: strategy A,
which yields a constant amount of energy
to the forager and raises its energy state to
point A in Figure 3: or strategy B, which
yields a variable amount of energy. Strategy
B either leaves the animal at B, or raises
the animal’s energy state to By, with equal
probability. For either strategy, the animal
has the same expected (mean) energy state,
but the resulting fitness for the variable en-
ergy state is lower, because of the dimin-
ishing fitness returns associated with energy
gains. The fitness gain from achieving an
energy state x units above A does not offset
the larger fitness loss from falling x units
below A. Thus, the animal experiences
higher average fitness for employing risk-
averse behavior. The opposite is true for a
concave-up fitness function.

The fitness function in Figure 3 predicts
higher fitness for risk-averse behavior, re-
gardless of the energy state of the animal.
If the relationship between energy state and
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Fitness

Energy State

FiG. 4. A sigmoidal relationship between energy state
and fitness. An animal with a low energy state (in the
concave-up region) may be risk-prone because the av-
erage fitness for a variable energy state exceeds that
for a constant energy state. An animal with a high
energy state looses more than it gains by a variable
energy state, which may lead to risk-averse behavior.

fitness is instead sigmoidal (Fig. 4), the
most adaptive behavior depends on the en-
ergy state of the animal: risk-prone at low
energy states, and risk-averse at higher en-
ergy states. Caraco assumes a this sort of
sigmoidal relationship to justify the energy
budget rule (Caraco, 1980; Real and Cara-
co, 1986), where the ‘“‘requirement’ of the
forager is taken to be at or near the steepest
part of the fitness function. As has been not-
ed elsewhere (Ellner and Real, 1989), the
z-score model can be regarded as a special
case of this argument for the energy budget
rule. By assuming the most extreme form
of a sigmoidal curve (a step function, where
fitness is zero below the required energy
state and one above it), and by assuming a
normal distribution of energy states asso-
ciated with each strategy, Stephens derived
the energy budget rule (Stephens and
Krebs, 1986). Although Jensen’s inequality
is normally thought of in relation to contin-
uous functions, the it applies to step func-
tions as well, with the same results.
Although Caraco (1980) and Real (1980)
are generally credited with conceptualizing
the implications of a non-linear fitness
function for foraging animals, Oster and
Wilson (1978) made very similar arguments
for ant colonies. Oster and Wilson consid-
ered the fitness of an ant colony as a whole,
and the different strategies consist of dif-



RiISK SENSITIVITY AND JENSEN’S INEQUALITY

ferent colony caste ratios. Nevertheless,
their argument rest on a sigmoid-shaped
curve relating net foraging yield to fitness.
Oster and Wilson (1978, p, 214) delineated
zones for ‘“‘tychophile’ and “‘tychophobe’
colony caste ratios on their graph of colony
fitness, which correspond precisely with
risk-prone and risk-averse behavior. It ap-
pears that considerations of variance in for-
aging success was the next logical step for
functional explanations of animal behavior
(behavior broadly defined).

To this point, I have considered fitness
functions associated with one aspect of sur-
vival of survival (i.e., avoiding starvation).
Of course, there are other components to
fitness, and other ways that energy state
might influence those components. For ex-
ample, Moore and Simms (1986) consider
a threshold energy state that birds must
meet before they migrate, and include ar-
guments for the effects of early or late mi-
gration in their model. In agreement with
their model, they found that birds in a pre-
migratory state were risk-prone until they
reached their maximum migratory weight.
Then they became risk averse. Bednekoff
(1996) considers a threshold energy state
that must be met before reproduction, with
additional fitness benefits for achieving
higher energy states beyond the threshold.
He briefly reviews several other models of
risk sensitivity and reproduction. Generally,
the predictions of these models are more
complicated than those of the energy bud-
get rule or the z-score model. The different
predictions of these models are due in part
to the different shapes (other than sigmoidal
or simple step function) considered for fit-
ness functions. For example, a positive re-
lationship between energy state and fitness
beyond the threshold for reproduction may
mean that risk-prone behavior yields higher
fitness even when the expected energy state
is above the threshold (Bednekoff, 1996).

I have presented only static models of
risk-sensitive behavior. That is, the models
consider the consequences of only one de-
cision between risk-averse and risk-prone
behavior, based on a particular set of pa-
rameters (e.g., energy state relative to re-
quirement, the shape of the fitness func-
tion). In natural settings, animals may be
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able to switch back and forth between risk-
prone and risk-averse behavior. Dynamic
optimization programming permits the con-
sideration of multiple decisions based on
changing state variables (such as energy
state and time remaining to forage), partic-
ularly when the changes are due in part to
the previous decisions of the animal. Dy-
namic optimization approaches to risk-sen-
sitive foraging theory produce an even
more diverse array of predictions for opti-
mal risk-sensitive behavior (chpt. 7 in Man-
gel and Clark, 1988; Bednekoff, 1996; Ka-
celnik and Bateson, 1996).

The preceding discussion has been re-
stricted to functional models of risk-sensi-
tive behavior. However, psychologists study
animal responses to variation in rewards,
and they also use Jensen’s inequality in
their explanations of animal preferences.
Psychological models of risk-sensitive be-
havior generally focus on proximate mech-
anisms rather than functional explanations
of the behaviors. Hence, psychologists pro-
pose and test psychological “laws” con-
cerning how information is perceived and
processed. For example, according to We-
ber’s law, a standard difference between
two stimuli becomes less noticeable as the
magnitude of the stimuli increases (e.g., a
0.03 g insect will appear much larger than
a 0.01 g insect, but a 1.03 g insect may be
very difficult to distinguish from a 1.01 g
insect). One possible explanation for We-
ber’s law is a concave-down relationship
between the actual and perceived magni-
tude of a stimulus. Considering Weber’s law
in light of Jensen’s inequality, it is possible
that the mean value of a variable reward
will be perceived as lower than the mean
value of a more constant reward. Psychol-
ogists and behavioral ecologists have pro-
posed Weber’s law as an explanation for the
apparent risk aversion of some foraging an-
imals (Hamm and Shettleworth, 1987; Per-
ez and Waddington, 1996).

RETURNING TO THE BASICS:
WHERE Is JENSEN’S INEQUALITY?

Functional models of risk-sensitive be-
havior generally follow the adaptationist’s
approach (also called the optimization re-
search program: see Mitchell and Valone
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1990). That is, animals are assumed to be-
have in ways that maximize fitness. The
models are our attempts to clarify the fit-
ness consquences that result from the
choices available to animals. Rules like the
energy-budget rule or the z-score model are
in some sense ‘‘second-order models” in
that they assume particular fitness functions
implicitly, and generate rules for fitness-
maximizing behavior based on those func-
tions. Until recently, behavioral ecologists
largely ignored information processing and
psychological mechanisms involved in an-
imal choices. Animals are typically as-
sumed to be perfectly informed (or com-
pletely ignorant) of the relevant parameters,
and assumed to choose the best available
strategy. Recently, some behavioral ecolo-
gists have begun explicitly considering how
psychological mechanisms may constrain
animal choices (Real, 1991, 1996; Kacelnik
and Bateson, 1996). Given this recent his-
tory, I see two important reasons for going
“back to the basics,” and explicitly exam-
ining the fitness functions implied by any
explanation for apparent risk-sensitive be-
havior. I explain each of these points below
with examples.

The first reason to return to the basics is
that second-order models may conceal un-
likely or unreasonable assumptions about
the fitness function. Most empirical tests of
functional hypotheses of risk-sensitive be-
havior begin with second-order models.
That is, rather than assess the relationship
between energy state and fitness, they test
predictions of the z-score model or energy-
budget rule, implicitly assuming the appro-
priate underlying fitness assumption (e.g.,
Barkan, 1990; Bansbach and Waddington,
1995; Lawes and Perrins, 1995). This is
problematic, because there are many rea-
sonable alternatives to the standard sigmoid
or step function of classic risk-sensitive
models (e.g., Bednekoff, 1996; McNamara,
1996). Second-order models do not allow
consideration of other fitness functions. If
an animal’s behavior reflects a different fit-
ness function, its risk-sensitive behavior
may not conform to the energy budget rule,
and the behavior may then be misinterpret-
ed.

It may often be difficult to assess fitness
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functions directly. However, even in such
situations, careful examination of the im-
plied fitness function may be useful. Con-
sider Rubenstein’s (1987) argument for
risk-sensitive reproductive strategies in spi-
ders. Rubenstein studied a population of
Meta segmentata, where female spiders are
patchily distributed, and large male spiders
realized the highest reproductive success by
pursuing females in the densely populated
patches. Because of their inability to win in
male-male competition, small males had a
higher reproductive success when they pur-
sued females in the sparsely populated areas
between dense patches (where a mating op-
portunity is unlikely to be contested). Mid-
sized male spiders achieved approximately
equivalent reproductive success (estimated
as number of eggs fertilized) in either dense
patches or sparsely populated areas. The
variance in reproductive success is much
higher in the dense patches: mid-sized
males were almost assured of one mating
opportunity in the sparsely populated areas,
whereas the densely populated patches al-
low males to attempt to mate with multiple
females. A mid-sized male pursuing mat-
ings in a dense patch may succeed, but risks
losing all opportunities to a larger male.
Rubenstein interpreted this situation as a
classic risk-sensitive pair of options: equal
mean reward with different variances.
However, in this case, the reward is the
number of eggs fertilized. For spiders
(which have no paternal care) it seems un-
likely that the relationship between number
of eggs fertilized and fitness will resemble
the sigmoidal functions of Figure 4. In fact,
if the relationship is linear, then there is no
difference in fitness between the variable
and the constant strategy. Jensen’s inequal-
ity becomes Jensen’s equality if the fitness
function is linear.

The second reason to return to the basics
is that there are several potential relation-
ships that may be cited as an explanation
for any particular risk-sensitive behavior.
Considerations of proximate mechanisms
increases the number of relationships under
consideration. This is a potential source of
confusion. Nectivores have been used in a
number of empirical investigations of risk
sensitivity (e.g., Cartar and Abrahams,
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1996; Perez and Waddington, 1996) and il-
lustrate this problem well. Consider a bee
that exhibits risk-averse behavior when pre-
sented with two kinds of flowers: those with
a constant volume of nectar, and those with
a variable volume of nectar. The classical
functional explanation for risk aversion
here would be to assume a concave-down
relationship between net energy state and
fitness. However, there may be a concave-
down relationship between nectar volume
and the net rate of energy intake by the bee.
If the latter were true and not the former
(note, they need not be mutually exclusive
possibilities), Perez and Waddington (1996)
would not consider this situation to be an
example of risk-sensitive foraging, while
Real (1996) would.

To continue with the example, one might
adjust the volume of nectar so that both
variable and constant flowers provide the
same expected net energy intake rate. If the
bee were still risk-averse, one functional
explanation might be the concave-down re-
lationship between net energy intake rate
and fitness mentioned above. Here, risk-
aversion maximizes fitness. Alternatively, if
there is a concave-down relationship be-
tween the actual volume of nectar in flow-
ers and the bees perception of nectar, the
bees may be maximizing their perceived
rate of nectar collection. This mechanistic
explanation does not exclude the functional
hypothesis. Bee perception might be shaped
by natural selection to promote risk-sensi-
tive behavior, or it may reflect the con-
straints of the bee’s neural architecture. In
short, there are at least three different re-
lationships involved in this behavior, any
one of which might account for the risk-
aversion observed, and none of which are
mutually exclusive of the others. Rigorous
tests of a risk-sensitive hypothesis is diffi-
cult or impossible if the roles of the differ-
ent possible nonlinear relationships in the
hypothesis are not clearly specified.

Hypotheses of adaptation and constraint
are particularly problematic in this regard.
Consider the different results obtained from
studies of the risk-sensitive behavior of
bumble bees (Bombus spp.). Real found
bumblebees to be risk averse under a vari-
ety of experimental conditions specifically
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designed to elicit risk-prone behavior (see
p- 384, Real and Caraco, 1986). He argues
that the constant risk aversion of his bumble
bees was due to an extremely short memory
window in bumble bees (Harder and Real,
1987; Real, 1991). It is not clear whether
the argument implies that the short memory
is an adaptation to the natural foraging en-
vironment of these particular bumble bee
species, or a neural constraint that prevents
them from foraging in a way that would
yield greater fitness. The distinction is im-
portant, particularly when these studies are
compared with those of Cartar (Cartar and
Dill, 1990; Cartar, 1991). Working with dif-
ferent, but congeneric species, Cartar elic-
ited switching behavior between relatively
risk-prone and risk-averse behaviors. While
it is true that Cartar’s experimental designs
differ in several ways from those of Real,
it is still the case that Cartar elicited
changes in the bees’ preferences for risk.
This behavioral flexibility is consistent with
a longer memory window for the bumble-
bees. If the short memory window advo-
cated by Real is a psychological constraint
of bumblebee neural architecture, it is ap-
parently a rather specific constraint that op-
erates in certain species of the genus, and
not in others. If it is an adaptation to the
local environment of the North Carolina
peidmont where these experiments were
done, we can test hypotheses as to the spe-
cific features of the environment that favor
constant risk-averse behavior. Each of these
possibilities may be developed into a viable
hypothesis. However, until a specific hy-
pothesis is put forward, it is not clear which
critical nonlinear relationship is being pro-
posed, nor where to look for applications of
Jensen’s inequality. No specific predictions
can be derived or subjected to experimental
test without first specifying an hypothesis.

CONCLUSIONS

Theoretical work suggests that in a num-
ber of circumstances, risk-sensitive behav-
ior should have fitness consequences (Mc-
Namara and Houston, 1992). The results
from a large body of empirical investiga-
tions into risk-sensitive behavior suggest
that many animals are sensitive to different
levels of variation (Kacelnik and Bateson,
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1996). Yet the empirical tests often do not
conform with the predictions of the sim-
plest functional models. Although this sit-
uation may be problematic, I view it as an
opportunity: a set of problems yet to be
solved. With a more diverse, realistic rep-
ertoire of functional models, and with the
careful synthesis of functional and mecha-
nistic models, I am hopeful that a clearer,
general understanding of risk-sensitive be-
havior in animals can be achieved.
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